欢迎光临《计算力学学报》官方网站!
李刚,刘志强.基于支持向量机替代模型的可靠性分析[J].计算力学学报,2011,28(5):676~681
本文二维码信息
码上扫一扫!
基于支持向量机替代模型的可靠性分析
Surrogate-based reliability analysis by support vector machine
投稿时间:2009-11-17  修订日期:2010-04-26
DOI:10.7511/jslx201105005
中文关键词:  可靠性  支持向量机  回归算法  分类算法  遗传算法
英文关键词:reliability  support vector machine  regression algorithm  classification algorithm  genetic algorithm
基金项目:国家973计划课题(2006CB705403);国家自然科学基金(90815023,10721062)资助项目.
作者单位E-mail
李刚 大连理工大学 工程力学系 工业装备结果分析国家重点实验室,大连 116023 ligang@dlut.edu.cn 
刘志强 大连理工大学 工程力学系 工业装备结果分析国家重点实验室,大连 116023  
摘要点击次数: 2623
全文下载次数: 1588
中文摘要:
      建立了基于支持向量机回归算法和分类算法的替代模型可靠性分析方法,与蒙特卡罗法结合,采用拉丁超立方抽样技术,进行隐式极限状态函数的可靠度计算。讨论了相关参数对支持向量机模型性能的影响,并通过遗传算法进行参数优化,为支持向量机模型的参数选择提供了依据。研究了不同训练样本数量对支持向量机模型预测值精度的影响,进一步证实了支持向量机的小样本特性。算例结果表明了本文方法的有效性和可行性。
英文摘要:
      This paper establishes the surrogate-based reliability analysis method for the implicit performance functions using the support vector regression algorithm and classification algorithm, in which Monte Carlo simulation method is integrated with the Latin hypercube sampling technique. The effects of the related parameters on the SVM performance are discussed and the genetic algorithm is used to optimize the parameters to provide a rational selection of SVM model. The efficiency of the SVM model with different sampling size is discussed, which testifies the good performance of SVM model with small sampling size. Finally, the numerical examples indicate the feasibility and efficiency of the proposed method.
查看全文  查看/发表评论  下载PDF阅读器
您是第13595343位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计