胡志强,林皋,王毅,刘俊.基于Hamilton体系的弹性力学问题的比例边界有限元方法[J].计算力学学报,2011,28(4):510~516 |
| 码上扫一扫! |
基于Hamilton体系的弹性力学问题的比例边界有限元方法 |
A Hamiltonian-based derivation of scaled boundary finite element method for elasticity |
投稿时间:2009-07-13 修订日期:2009-11-12 |
DOI:10.7511/jslx201104004 |
中文关键词: Hamilton体系 比例边界有限元 弹性力学 边界刚度矩阵 |
英文关键词:Hamilton system scaled boundary finite element mechanics of elasticity boundary stiffness matrix |
基金项目:国家自然科学重点基金(90510018);大连理工大学交叉学科建设专项(数学+X)项目(MXDUT072001)资助项目. |
|
摘要点击次数: 2207 |
全文下载次数: 1512 |
中文摘要: |
比例边界有限元方法是求解偏微分方程的一种半解析半数值解法。对于弹性力学问题,可采用基于力学相似性、基于比例坐标相似变换的加权余量法和虚功原理得到以位移为未知量的系统控制方程,属于Lagrange体系。但在求解时,又引入了表面力为未知量,控制方程属于Hamilton体系。因而,本文提出在比例边界有限元离散方法的基础上,利用钟万勰教授提出的弹性力学对偶(辛)体系求解方法,通过引入对偶变量,直接在Hamilton体系框架内建立控制方程。再利用区段混合能和对偶方程得到了有限域、无限域边界静力刚度所满足的代数Riccati方程,该方程可采用特征向量展开方法和精细积分方法进行求解。 |
英文摘要: |
The scaled boundary finite element method (SBFEM) is a semi-analytical and semi-numerical solution approach for solving partial differential equation. For problem in elasticity, the governing equations can be obtained by mechanically based formulation, Weighted residual formulation and principle of virtual work based on Scaled-boundary-transformation. These formulations are described in the frame of Lagrange system and the unknowns are displacements. In this paper, the discretization of the SBFEM and the dual system to solve elastic problem proposed by W.X. Zhong are combined to derive the governing equations in the frame of Hamilton system by introducing the dual variables. Then the algebraic Riccati equations of the static boundary stiffness matrix for the bounded and unbounded domain are derived based on the hybrid energy and Hamilton variational principle in the interval. The eigen-vector method and precise integration method can be employed to solve the algebraic Riccati equations for static boundary stiffness matrice. |
查看全文 查看/发表评论 下载PDF阅读器 |