欢迎光临《计算力学学报》官方网站!
黄拳章,郑小平,王彬,王云,姚振汉.含液多孔介质力学问题的边界元方法[J].计算力学学报,2011,28(2):226~230
本文二维码信息
码上扫一扫!
含液多孔介质力学问题的边界元方法
Boundary element method for linear problems of fluid-saturated porous media
投稿时间:2009-08-27  修订日期:2009-12-02
DOI:10.7511/jslx201102013
中文关键词:  含液多孔介质  边界元法  叠加原理  等效弹性模量
英文关键词:Boundary element method  fluid-saturated porous media  principle of superposition  effective elastic modulus
基金项目:中国国家自然科学基金(50976017);国家自然科学基金委员会重点(50736001)资助支持.
作者单位E-mail
黄拳章 清华大学 工程力学系,北京 100084
西安高科技研究所201室,西安 710025 
 
郑小平 清华大学 工程力学系,北京 100084 zhengxp@tsinghua.edu.cn 
王彬 清华大学 工程力学系,北京 100084  
王云 清华大学 工程力学系,北京 100084  
姚振汉 清华大学 工程力学系,北京 100084  
摘要点击次数: 1644
全文下载次数: 1684
中文摘要:
      提出了一种含液多孔介质力学问题的边界元求解方法。首先将问题分解为一系列含单孔流体夹杂的子问题,然后针对每个子问题建立了流体孔体积变化率与流体压力之间的函数关系,进一步采用边界元方法建立了以各流体孔压力为基本未知量的线性代数方程组,最后根据所求出的各流体孔的压力计算含液多孔介质内各点的位移、变形和应力。为了说明方法的有效性,本文以平面应变问题为例,计算了不同流体夹杂体积比下介质的等效弹性模量,并且将计算结果与有关文献结果进行了对比分析。
英文摘要:
      In this paper, a new method to solve the linear problem of fluid-saturated porous media is presented by using the boundary element method. Firstly, the whole problem can be decomposed into a series of similar sub-problems, each of which contains only one fluid inclusion. Furthermore, the relation between the fluid volume variation and pressure variation for each of the sub-problems can be obtained, and based on these relations, a set of algebraic equations dealing with the fluid pressure are constructed consequently. After solving the algebraic equations, all the fluid pressure in different pores as well as the displacement fields in the whole domain can be solved. In order to illustrate the applications of the presented method, one example of a plane strain problem is presented; and the effective elastic modulus is computed under different porosities, which shows good agreement with the results in the references.
查看全文  查看/发表评论  下载PDF阅读器
您是第13575689位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计