孙丹,杨建刚.基于局部DQ-RBF不可压缩N-S方程的数值求解[J].计算力学学报,2011,28(2):221~225 |
|  码上扫一扫! |
基于局部DQ-RBF不可压缩N-S方程的数值求解 |
Numerical solution of incompressible Navier-Stokes equations by local radial basis function-based differential quadrature method |
投稿时间:2009-05-01 修订日期:2009-09-23 |
DOI:10.7511/jslx201102012 |
中文关键词: 局部微分求积法 径向基函数 迎风机制 Navier-Stokes方程 |
英文关键词:Local differential quadrature method radial basis function upwind scheme Navier-Stokes equations |
基金项目:国家自然科学基金(50875045)资助项目. |
|
摘要点击次数: 2547 |
全文下载次数: 1395 |
中文摘要: |
以RBF作为DQ方法的基函数,将迎风机制引入DQ-RBF中,建立了二维不可压缩黏性N-S方程数值求解模型,采用Levenberg-Marquardt算法求解非线性方程组。求解时分析了形状参数对求解精度的影响,改进了边界速度的处理方法。对平板Couette流及有限宽台阶绕流流动问题进行了数值求解。比较了本文方法和FLUENT软件计算结果,指出该方法可以用于求解不可压缩N-S方程。 |
英文摘要: |
Numerical solution of incompressible Navier-Stokes equations by local radial basis function-based differential method was set up. The upwind method was brought into the local radial basis function-based differential method. The non-linear equations were solved using the Levenberg-Marquardt method. The influence of shape parameter on the accuracy of the new method was analyzed. The treatment of the boundary condition was improved. The proposed scheme is validated by its application to simulate the couette flow and the finite width step flow. The obtained numerical results with the method agrees well with those obtained using the Fluent package. |
查看全文 查看/发表评论 下载PDF阅读器 |