欢迎光临《计算力学学报》官方网站!
平学成,陈梦成,谢基龙.周期分布多边形夹杂奇异性应力干涉问题的研究[J].计算力学学报,2010,27(6):1117~1122
本文二维码信息
码上扫一扫!
周期分布多边形夹杂奇异性应力干涉问题的研究
Studies on stress interactions within periodic polygonal inclusions
投稿时间:2008-11-20  修订日期:2010-03-29
DOI:10.7511/jslx20106028
中文关键词:  非均质材料  多边形夹杂  干涉  广义应力强度因子  杂交元法
英文关键词:heterogeneous material  polygonal inclusion  interaction  generalized stress intensity factor  hybrid finite element method
基金项目:国家自然科学基金(10662004,51065008);江西省自然科学基金(2007GZW0862);江西省教育厅科研课题(GJJ10444)资助项目.
作者单位
平学成 华东交通大学 机电工程学院,南昌 330013 
陈梦成 华东交通大学 机电工程学院,南昌 330013 
谢基龙 北京交通大学 机械与电子控制工程学院,北京 100044 
摘要点击次数: 2420
全文下载次数: 1493
中文摘要:
      采用一种新型的杂交元模型和一种单胞模型来解决周期分布多边形夹杂角部的奇异性应力相互干涉的问题。新型杂交元模型是基于广义Hellinger-Reissner变分原理建立的,其中奇异性应力场分量和位移场分量是采用有限元特征分析法的数值特征解得到的。使用当前的新型杂交元模型,只需要在夹杂角部邻域的周界上划分一维单元,避免了像传统有限元模型那样需要划分高密度二维单元。文中给出了代表奇异性应力场强度的夹杂角部广义应力强度因子数值解,并考虑材料属性、夹杂尺寸和夹杂位置关系的影响。算例中,考虑了夹杂和基体完全接合的情况,并给出了考核例。结果表明:当前模型能得到高精度数值解,且收敛性好;与传统有限元法和积分方程方法相比,该模型更具有通用性,为非均质材料的细观力学分析打下了基础。
英文摘要:
      This paper deals with the stress interaction problem of periodic polygonal inclusions under far field tension by using a novel hybrid finite element model and a unit cell model. The novel hybrid finite element method is established based on the general Hellinger-Reissner variational principle for an inclusion corner tip domain, in which components of stress and displacement fields are expressed by numerical eigensolusions obtained from an ad hoc finite element eigenanalysis method. Due to the use of present finite element method, only boundaries of a inclusion corner tip domain need to be discretized, i.e., 2D meshes with high density are avoided. Generalized stress intensity factors which represent the intensities of stress fields at the corners of inclusions are systematically calculated with varying the material type, shape and arrangement of polygonal inclusions. In numerical examples, the inclusion-matrix interfaces are assumed to be perfectly bonded, and some numerical results are compared with existing results. The present method is found to be yield rapidly converging numerical solutions with high accuracy. Relative to the conventional finite element method, even the boundary integral equation method, the method is more versatile, attractive and potentially very useful in the analysis of micromechanics of heterogeneous materials.
查看全文  查看/发表评论  下载PDF阅读器
您是第13577756位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计