欢迎光临《计算力学学报》官方网站!
李美香,张宏伟,李卫国.基于点插值的配点型无网格法解Helmholtz问题[J].计算力学学报,2010,27(3):533~536
本文二维码信息
码上扫一扫!
基于点插值的配点型无网格法解Helmholtz问题
Solving Helmholtz problem by collocation meshless method based on point interpolation
投稿时间:2008-08-07  
DOI:10.7511/jslx20103026
中文关键词:  Helmholtz方程  无网格法  点插值法  配点格式
英文关键词:Helmholtz equation  meshless method  point interpolation method  collocation formulation
基金项目:大连理工大学数学+x(842326)资助项目.
作者单位
李美香 大连理工大学应用数学系,大连 116024 
张宏伟 大连理工大学应用数学系,大连 116024 
李卫国 大连理工大学应用数学系,大连 116024 
摘要点击次数: 1640
全文下载次数: 1365
中文摘要:
      基于点插值法的思想,用三角函数作为基函数在局部支持域内构造具有Kroneckerδ函数性、单位分解性、高阶连续性、再生性和紧支性的形函数。用配点法离散微分方程,得到了具有稀疏带状性的系数矩阵,用GMERS方法求解代数方程组,分别研究了Helmholtz问题的边界层问题和波传播问题。通过数值算例可以发现,给出的数值结果非常接近于精确解,且随着节点的增加,其精确度越来越高,具有良好的收敛性。
英文摘要:
      Combining the point interpolation method with trigonometric functions which are used as base functions, a shape function is structured in the local support domain. The shape function has many properties, such as Kronecker functionality, unit decomposition and reproducibility as well as compact properties. Discreting differential equations by the allocation method, a sparse band coefficient matrix is obtained. The GMERS method is used to solve algebraic equations. Two kinds of Helmholtz problem: a boundary layer problem and a wave propagation problem are solved. Numerical examples can be found, and the results are close to the exact solutions. Furthermore, high precision and good convergence could be obtained as the nodes increased.
查看全文  查看/发表评论  下载PDF阅读器
您是第13576151位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计