虞跨海,岳珠峰,杨茜.涡轮冷却叶片气动与传热设计优化[J].计算力学学报,2010,27(2):310~314 |
| 码上扫一扫! |
涡轮冷却叶片气动与传热设计优化 |
Aerodynamic and heat transfer design optimization for cooling turbine blade |
投稿时间:2008-02-12 |
DOI:10.7511/jslx20102022 |
中文关键词: 涡轮冷却叶片 多目标优化 KS函数 参数化建模 流-热耦合 |
英文关键词:cooling turbine blade multi-objective optimization KS function parametric design coupled aero-thermal analysis |
基金项目:国家自然科学基金(50375124,10472094);863计划(2006AA04Z401);高等学校学科创新引智计划(B07050)资助项目. |
|
摘要点击次数: 1687 |
全文下载次数: 1211 |
中文摘要: |
提出了航空发动机涡轮冷却叶片叶栅气动与传热自动优化方法,利用函数解析成型方法实现了冷却叶片几何模型的参数化与自动生成,可以建立任意冷却内腔数量的叶片模型;基于N-S方程实现叶片流体域与固体域的流-热耦合分析;采用KS函数方法将多目标优化问题转化为单目标函数进行优化,以总压损失、叶片最高温度和平均温度最小为优化目标进行了自动优化,改善了叶片性能。 |
英文摘要: |
This paper presents an automated computer aid design optimization program for aerodynamic and heat transfer optimization of 2D internal cooling gas turbine blades. Parametric geometry models were developed with analytic function methods. The suction surface and pressure surface are presented by a series of quintic splines, the leading edge geometry and the trailing edge geometry were represented by circular arc which helps to maintain a smooth geometry connection at the end points of the pressure side and the suction side. Wall thickness functions were defined to get the coolant flow passage profile. A modeling program was developed to create the blade geometry automated without user intervention. Different number cavities blades could be built only by changing the number of rib. Coupled aero-thermal analysis method was used to solve the flow-field and solid-field based on compressible Navier-Stokes equation. The KS function method which transformed the multi-objective problems into single-objective was used for optimization. With the optimization of blade profiles, the total pressure loss, the maximal temperature and the average volume temperature were reduced significantly. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|
|