欢迎光临《计算力学学报》官方网站!
王静,高效伟.基于单元子分法的结构多尺度边界单元法[J].计算力学学报,2010,27(2):258~263
本文二维码信息
码上扫一扫!
基于单元子分法的结构多尺度边界单元法
Structural multi-scale boundary element method based on element subdivision technique
投稿时间:2008-04-29  
DOI:10.7511/jslx20102013
中文关键词:  边界单元法  单元子分法  结构多尺度  非均质材料  多区域问题
英文关键词:boundary element method  element subdivision technique  structural multi-scale  nonhomogeneous material  multi-domain problems
基金项目:国家自然科学基金(10872050)资助项目.
作者单位
王静 东南大学 土木工程学院工程力学系,南京 210096 
高效伟 大连理工大学 工业装备结构分析国家重点实验室,大连 116024 
摘要点击次数: 1774
全文下载次数: 1363
中文摘要:
      建立在基于单元子分法的一种有效自适应格式以及多区域边界元三步求解技术基础上提出了一种计算结构多尺度问题的多区域边界元法。首先,通过高斯积分误差分析公式确定边界单元在满足精度要求下所需要的高斯点数,当所需高斯点数超过规定数目时该单元就被自动划分成一定数量的子单元,从而消除结构多尺度所引起的近奇异性。在单元子分技术的基础上采用多区域边界元三步求解技术来处理材料非均质问题:第一步消除各子域的内部未知量,第二步消除各子域独自拥有的边界未知量,第三步根据位移相容性条件和面力平衡条件建立系统方程组并求解公共界面节点位移以及每个子域的其他未知量。数值算例结果表明本方法可以用较少的计算时间得到满意的结果,是处理结构多尺度问题的一种有效方法。
英文摘要:
      A boundary element method for solving structural multi-scale problems is described. The method is based on an efficient adaptive element subdivision technique and a three-step solution technique for multi-domain boundary element method. First, Gauss integration error formulate is used to ascertain the required number of Gauss points under given accuracy. Once the number exceeds the allowed number, the element is divided into a number of sub-elements, and consequently, near singularities caused by the multi-scales can be eliminated. A three-step solution technique for multi-domain boundary element method is adopted for solving non-homogeneous material problems based on the sub-element technique. The first step is to eliminate internal variables at the individual domain level. The second step is to eliminate boundary unknowns defined over nodes used only by a domain itself. And the third step is to establish the system of equations according to the compatibility of displacements and equilibrium of tractions at common interface nodes, and solve the system for displacements at common interface nodes as well as other unknowns within each sub-domain. Numerical examples are given to demonstrate that the presented method can obtain satisfied results with less computational time, and it is an efficient method for solving structural multi-scale problems.
查看全文  查看/发表评论  下载PDF阅读器
您是第13594106位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计