陈梦成,平学成,姜羡.复合材料中矩形夹杂角端部力学行为分析[J].计算力学学报,2010,27(1):53~58 |
| 码上扫一扫! |
复合材料中矩形夹杂角端部力学行为分析 |
Analysis of singular stress fields around an inclusion corner |
投稿时间:2008-02-19 |
DOI:10.7511/jslx20101009 |
中文关键词: 复合材料 矩形夹杂 杂交有限元 奇性指数 广义应力强度因子 |
英文关键词:elasticity rectangular inclusion hybrid finite element method singularity generalized stress intensity factor |
基金项目:国家自然科学基金(10362002;10662004)资助项目. |
|
摘要点击次数: 1674 |
全文下载次数: 1253 |
中文摘要: |
提出了一种分析矩形夹杂角端部奇异应力场的新型杂交有限元方法,该方法在分析矩形夹杂角端部奇异应力场时,需要在夹杂端部构造一个超级单元。超级单元的刚度矩阵可以通过夹杂端部特征问题数值解建立。我们用这种方法计算了单向载荷作用下无限大均质板中单个矩形夹杂角端部奇异应力场,并与现有的数值解进行了比较。比较结果表明:本文提出的方法是可行的、有效的,而且数值结果精度高。为说明本文方法适用范围更广,文章最后讨论了各向异性弹性材料和横观各向同性压电材料中矩形夹杂角端部电弹性场行为。 |
英文摘要: |
In this paper, a new hybrid finite element model was developed to analyze singular stress fields around an inclusion corner. A super inclusion corner element is needed to build in the analysis. The stiffness matrix of the element is established with the eigen solutions of rectangular inclusion problems. The method is used to compute singular stress fields around a rectangular inclusion embedded into an infinite homogeneous plate. The numerical results were compared with the available numerical solutions. The comparisons show that present method is applicable and effective, and yields numerical results with high accuracies and is more suitable for complicated engineering inclusion problems. Finally, mechanical or electro-mechanical behavior near a rectangular inclusion corner in anisotropic materials or piezoelectric materials is discussed. |
查看全文 查看/发表评论 下载PDF阅读器 |