欢迎光临《计算力学学报》官方网站!
彭海军,吴志刚.基于Fourier级数的时变周期系数Riccati微分方程精细积分[J].计算力学学报,2009,26(6):772~777
本文二维码信息
码上扫一扫!
基于Fourier级数的时变周期系数Riccati微分方程精细积分
Solving time-varying periodic coefficient Riccati differential equations via Fourier series and precise integration method
投稿时间:2007-12-07  
DOI:10.7511/jslx20096003
中文关键词:  线性时变系统  周期Riccati微分方程  Fourier级数  精细积分
英文关键词:linear time-varying system  periodic Riccati differential equations  Fourier series  precise integration method
基金项目:高等学校博士学科点专项基金(20070141067);国家科学基金重点(10632030)资助项目.
作者单位
彭海军 大连理工大学 运载工程与力学学部工程力学系 工业装备结构分析国家重点实验室,大连 116023 
吴志刚 大连理工大学 运载工程与力学学部工程力学系 工业装备结构分析国家重点实验室,大连 116023 
摘要点击次数: 1653
全文下载次数: 1173
中文摘要:
      结合Fourier级数展开方法,本文提出了基于精细积分的时变周期系数Riccati微分方程求解高效算法。首先,利用Fourier级数展开方法将周期系统表示成三角级数形式,在一个积分步内使用精细积分方法得到对应Hamilton系统状态转移矩阵的表达式。然后,通过Riccati变换的方法,得到含有状态转移矩阵的时变周期系数Riccati微分方程解的递推格式。本文方法充分利用了方程本身的周期性特点,文中的数值算例表明算法具有计算效率高、结果可靠等优势。
英文摘要:
      With Fourier series expansions, an efficient numerical algorithm is proposed for solving time-varying periodic coefficient Riccati differential equations. Firstly, periodic coefficients are expanded in terms of Fourier series, and the state transformation matrix of the associated Hamiltonian system is evaluated by the precise integration method. Then, by employing the Riccati transformation method, recursive formulae for time-varying periodic coefficient Riccati differential equations are derived, which consist of blocks of the state transformation matrix. At last, the efficiency and reliability of the periodic character based numerical method is demonstrated by two examples.
查看全文  查看/发表评论  下载PDF阅读器
您是第13576770位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计