尚仁杰,吴转琴,李佩勋,刘景亮.双向张弦梁找形的有限元法[J].计算力学学报,2009,26(1):131~136 |
| 码上扫一扫! |
双向张弦梁找形的有限元法 |
|
投稿时间:2006-08-19 |
DOI:10.7511/jslx20091021 |
中文关键词: 双向张弦梁 找形 有限元法 初应变 张拉 |
英文关键词:bi-directional string structure form finding FEM initial strain tension |
基金项目: |
|
摘要点击次数: 1219 |
全文下载次数: 1693 |
中文摘要: |
根据双向张弦梁上弦压力和下弦拉力在节点产生的竖向分力与撑杆高度之间的关系推导了单元刚度矩阵,根据外荷载与上弦和下弦在节点产生的竖向分力相等的原则建立了以撑杆高度为未知数的双向张弦梁找形的线性有限元列式并编制了有限元程序,给出了张弦梁计算时下弦拉索初应变确定方法和张拉控制方法;通过对平屋顶和曲面屋顶双向张弦梁2个算例找形计算和受力分析验证了找形方法的正确性以及撑杆高度与屋面形状的无关性。本文给出的计算方法将撑杆高度作为未知量,考虑了上弦为曲面时拱的作用,计算方便、结果准确。 |
英文摘要: |
The element stiffness matrix is deduced in the paper based on the relationship of the nodal vertical forces of up beams under axial pressure and down string-net under tensions to the heights of stay bars. The FEM to calculate the heights of stay bars is provided according to the principle of the external loads equaling to the nodal forces of up beams and the down strings, and the FEM program is written. The initial strains of the down strings used to calculate the bi-directional string structure and the tension control method are given. The FEM process to calculate the form is introduced by examples of a flat roof and a curved roof bi-directional string structures. The accuracy of the method is confirmed and the heights of stay bars have no relation to the form of up beams is verified through the calculating of the examples. The method in the paper taking the height of stay bar as unknown and considering the arch effect of the curved up beams is easy to carry out and has an accurate result. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|
|