于津江,王荣爱,许海波.一双峰混沌系统非线性动力学行为[J].计算力学学报,2007,24(3):341~344 |
|  码上扫一扫! |
一双峰混沌系统非线性动力学行为 |
A study on nonlinear dynamics of a two-peak chaotic system |
修订日期:2005-12-26 |
DOI:10.7511/jslx20073066 |
中文关键词: 双峰混沌系统,阵发性混沌,混沌吸引子,倍周期分岔 |
英文关键词:two-peak chaotic system,intermittent chaotic,chaotic attractor,period-doubling bifurcations |
基金项目:国家自然科学基金(10247003)资助项目 |
于津江 王荣爱 许海波 |
石家庄学院物理系,石家庄学院物理系,北京应用物理与计算数学研究所 河北石家庄050801,北京应用物理与计算数学研究所,北京100088,河北石家庄050801,北京100088 |
摘要点击次数: 1436 |
全文下载次数: 10 |
中文摘要: |
通过对一双峰混沌系统的非线性动力学行为的研究,发现随着系统参数的变化,双峰混沌系统由混沌状态开始,经阵发性混沌、不动点、倍周期分岔到受初始值的影响两个混沌吸引子,而后又收敛为另一个不动点,最后再次进入混沌状态。该系统呈现出复杂的非线性动力学行为。 |
英文摘要: |
Studying the nonlinear dynamics of a two-peak chaotic system,we found that the behaviour of the system begins with chaos,through intermittent chaotic,fixed points,period-doubling bifurcations to two chaotic attractors,converges to another fixed point,finally turns up to a new chaotic state.Computer simulations prove the validity of theory,it shows that there are a lot of chaotic phenomena in a two-peak discrete chaotic system,during a given range of system parameters,importing different original values,two different bifurcation series and attractors will appear in the same system.The iteration procedure of the system occurs between the two values,the whole two-peak chaotic system has complicated nonlinear dynamic behaviour.It's important for the studying of multi-attractors in theory and applications. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|
|