欢迎光临《计算力学学报》官方网站!
孙海涛,王元汉.基于余弦样条函数的有限点阵法[J].计算力学学报,2007,24(1):111~116
本文二维码信息
码上扫一扫!
基于余弦样条函数的有限点阵法
Finite point matrix method based on cosine spline
  修订日期:2005-01-10
DOI:10.7511/jslx20071021
中文关键词:  影响域,点阵,余弦样条函数,张量积,正则空间,数值方法
英文关键词:influence domain,point matrix,cosine spline function,tensor product,normalization space,numerical method
基金项目:
孙海涛  王元汉
华中科技大学土木工程与力学学院 湖北武汉430074
摘要点击次数: 1452
全文下载次数: 10
中文摘要:
      应用节点影响域的概念,提出了基于余弦样条函数的有限点阵方法。利用余弦样条函数的性质,通过张量积的形式构造余弦样条函数正则解空间,用于逼近场函数,余弦样条基的线性组合使得边界条件处理如同有限元法一样方便。余弦样条与边界型方法结合,可用于求解不规则域问题。数值实例的计算结果表明,文中方法避免了高阶多项式构造形函数所带来的数值振荡,解的连续性不受限制,为改进计算精度而加密点阵所导致的计算量增加量较少,计算收敛快。
英文摘要:
      A finite point matrix method based on the cosine splines is presented by utilizing the conception of the nodal influence domain in this paper.Some important properties of the cosine spline functions are identified for deriving the formulas and exhibiting the performances of the numerical method proposed here.With applications of the cosine spline bases as solution space,a normalized space is constructed for approximation of the field functions through tensor product method.Linear combination of the cosine spline bases results in the treatment of the boundary conditions prescribed as conveniently as traditional finite element method.Coupled with the boundary type numerical methods,cosine splines can be employed for solving problems in an irregular domain by node matrix distributed on the boundary.Several numerical examples are posed to identify the method and show the advantages while the method is adopted.Results demonstrate that numerical oscillation resulted from high degree polynomial shape functions is avoided and continuity rank is limited no more.Densifying point matrix required for improving accuracy brings a lightly enhancement on the quantity of calculation only.Rapid convergence is another identification mark of the method.
查看全文  查看/发表评论  下载PDF阅读器
您是第13578729位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计