欢迎光临《计算力学学报》官方网站!
付士慧,王琪.多体系统动力学方程违约修正的数值计算方法[J].计算力学学报,2007,24(1):44~49
本文二维码信息
码上扫一扫!
多体系统动力学方程违约修正的数值计算方法
A numerical method for constraint stabilization of dynamic equations of multi-body systems
  修订日期:2005-02-26
DOI:10.7511/jslx20071009
中文关键词:  多体系统,完整定常约束,微分代数方程,违约修正
英文关键词:multi-body system,holonomic and steady constraint,differential-algebraic equation,stabilization
基金项目:国家自然科学基金
付士慧  王琪
北京航空航天大学理学院 北京100083
摘要点击次数: 1737
全文下载次数: 10
中文摘要:
      多体系统动力学方程为微分代数方程,一般将其转化成常微分方程组进行数值计算,在数值积分的过程中约束方程的违约会逐渐增大。本文对具有完整、定常约束的多体系统,在修改的带乘子Lagrange正则形式的方程的基础上,根据Baumgarte提出的违约修正的方法,给出了一种多体系统微分代数方程违约修正法和系统的动力学方程的矩阵表达式。通过对曲柄-滑块机构的数值仿真,计算结果表明本文给出的方法在计算精度和计算效率上好于Baumgarte提出的两种违约修正的方法。
英文摘要:
      Dynamic equations of multi-body systems with holonomic constraints are differential-algebraic equations.In order to be solved numerically,they are generally transformed into ordinary differential equations by differentiating constraint equations.However,during the numerical integration of those ordinary differential equations,the constraints are violated more and more.In this paper, a new method of constraint stabilization is put forward based on Baungarte's stabilization.According to the method,the dynamic equations of multi-body systems with holonomic and steady constraints are given in the matrix form of modified Lagrange's canonical equations with multipliers.The numerical simulation of a slider-crank mechanism shows that the computational precision of this method is higher than that of other methods.And the numerical simulation for long is not false,which benefits to the numerical calculation of Lyapunov exponents of multi-body systems.
查看全文  查看/发表评论  下载PDF阅读器
您是第13578457位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计