欢迎光临《计算力学学报》官方网站!
陈建忠,史忠科.求解双曲型守恒律的半离散三阶中心迎风格式[J].计算力学学报,2006,23(2):157~162
本文二维码信息
码上扫一扫!
求解双曲型守恒律的半离散三阶中心迎风格式
Third-order semi-discrete central-upwind scheme for hyperbolic conservation laws
  修订日期:2004-03-25
DOI:10.7511/jslx20062029
中文关键词:  双曲型守恒律  中心迎风格式  半离散  重构
英文关键词:hyperbolic conservation laws,central-upwind schemes,semi-discrete,reconstruction
基金项目:国家高技术研究发展计划(863计划)
陈建忠  史忠科
西北工业大学自动化学院,西安710072
摘要点击次数: 1501
全文下载次数: 8
中文摘要:
      给出了求解一维双曲型守恒律的一种半离散三阶中心迎风格式,并利用逐维进行计算的方法将格式推广到二维守恒律。构造格式时利用了波传播的单侧局部速度,三阶重构方法的引入保证了格式的精度。时间方向的离散采用三阶TVD Runge—Kutta方法。本文格式保持了中心差分格式简单的优点,即不需用Riemann解算器,避免了进行特征分解过程。用该格式对一维和二维守恒律进行了大量的数值试验,结果表明本文格式是高精度、高分辨率的。
英文摘要:
      A third-order semi-discrete central-upwind scheme for one-dimensional system of conservation laws was presented.The scheme is extended to two-dimensional hyperbolic conservation law by the dimension-by-dimension approach.The presented scheme is based on the one-sided local speed of wave propagation.In order to guarantee the accuracy of spatial discretizaiton,a third-order reconstruction is introduced in this paper.The time integration is implemented by using the third-order TVD Runge-Kutta method.The resulting scheme retains the main advantage of the central-schemes simplicity,namely no Riemann solvers are involved and hence characteristic decompositions can be avoided.A variety of numerical experiments in both one and two dimensions are computed.The results show the high accuracy and high resolution of the scheme.
查看全文  查看/发表评论  下载PDF阅读器
您是第13579575位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计