黄义,韩建刚.薄板小波有限元理论及其应用[J].计算力学学报,2006,23(1):76~81 |
| 码上扫一扫! |
薄板小波有限元理论及其应用 |
Theory and application of wavelet finite element method for thin plate |
修订日期:2003-12-26 |
DOI:10.7511/jslx20061014 |
中文关键词: 小波函数 小波有限元 薄板 弹性地基 |
英文关键词:wavelet functions,wavelet finite element,thin plate,elastic foundation |
基金项目:中国科学院资助项目 |
黄义 韩建刚 |
[1]西安建筑科技大学理学院,西安710055 [2]海南大学土木工程系,海口570228 |
摘要点击次数: 1711 |
全文下载次数: 8 |
中文摘要: |
利用样条小波尺度函数构造了常用的三角形和矩形薄板单元的位移函数,得到了利用小波函数表示的形函数。采用合理的局部坐标.对单元进行压缩,使单元在局部坐标区间上有其值,成功地推导出了分域的三角形和矩形薄板小波有限元列式。在此基础上,提出了弹性地基薄板的小波有限元求解方法。通过两个算例对薄板的挠度和弯矩进行了计算.数值结果表明,求解结果具有收敛快、精度高的特点。 |
英文摘要: |
Wavelet scaling functions of spline wavelets are used firstly to construct displacement functions of triangular and rectangular thin plate elements in finite element method.So displacement shape functions can be expressed by wavelet functions.Selecting convenient local coordinates and compressing elements, which make elements having their values in interval in local coordinates.Wavelet finite element expressions of triangular and rectangular elements in dividing domain of thin plate are derived through the principle of virtual work. The wavelet finite element method used to selve thin plate of elastic foundation is presented.This work represents the first attempt in using wavelet functions in finite element method of dividing domain.Numerical analysis of two examples demonstrates the deflection and moment of thin plate are consistent with those obtained with analytical solution,which illustrates that the wavelet finite element method has better convergence and higher accuracy. |
查看全文 查看/发表评论 下载PDF阅读器 |