欢迎光临《计算力学学报》官方网站!
杨海天,朱应利.光滑函数法求解拉压不同弹性模量问题[J].计算力学学报,2006,23(1):19~23
本文二维码信息
码上扫一扫!
光滑函数法求解拉压不同弹性模量问题
Solving elasticity problems with bi-modulus via a smoothing technique
  修订日期:2004-03-29
DOI:10.7511/jslx20061004
中文关键词:  不同弹性模量  光滑函数  初应力法  有限元  热应力
英文关键词:dual extension-compression modulus,smooth function,initial stress,finite element,thermal stress
基金项目:中国科学院资助项目;科技部科研项目;辽宁省高等学校中青年学科带头人基金
杨海天  朱应利
[1]大连理工大学工业装备结构分析国家重点实验室工程力学系,大连116023 [2]山东科技大学机械电子工程学院,青岛266510
摘要点击次数: 1421
全文下载次数: 8
中文摘要:
      采用光滑函数技术.对拉压不同弹性模量问题的应力应变关系进行光滑处理,可避免迭代中应力状态的判断,方便计算。同时建立了相应的基于初应力技术的有限元计算模武,仅需对刚度阵三角化一次,避免了考虑剪切刚度带来的不便。文中通过不同算例,对所提算法进行了数值验证,与解析解相比有很好符合。此外,对不同拉压模置的热应力分析进行了初步探讨。
英文摘要:
      Constitutive non-linearity and discontinuity are dominant difficulties in solving elastic bi-modular problems either analytically or numerically.In this paper,maximum/mimimum functions are utilized to describe the non-linear relationship of stress and strain,and smoothly approximated by a set of entropy principle based smoothing functions.The smoothed constitutive equation is combined with an initial stress scheme to set up a FEM based numerical model that may lead to a higher computing efficiency since the stiffness matrix needs to be triangularized one time only in the whole computing process,and can avoid the inconvenience induced by choosing shear modulus.8-node iso-parameteric finite element is adopted in the computing.A number of numerical examples are presented to verify the proposed algorithm,and compared satisfactorily with other solutions.Additionally,A bi-modular thermal stress analysis is given.
查看全文  查看/发表评论  下载PDF阅读器
您是第13575877位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计