欢迎光临《计算力学学报》官方网站!
崔凯,李兴斯,李宝元,杨国伟.求解非线性反问题的大范围收敛梯度正则化算法[J].计算力学学报,2005,22(4):415~419
本文二维码信息
码上扫一扫!
求解非线性反问题的大范围收敛梯度正则化算法
Global convergence gradient regularization algorithm for solving nonlinear inverse problems
  修订日期:2003-07-18
DOI:10.7511/jslx20054082
中文关键词:  反演  梯度正则化  同伦方法  正则化参数
英文关键词:inversion,gradient regularization method,homotopy method,regularization parameter
基金项目:国家重点基础研究发展规划(G1999032805)资助项目.
崔凯  李兴斯  李宝元  杨国伟
[1]中国科学院力学研究所高温气体动力学重点实验室,北京100080 [2]大连理工大学工程力学系,辽宁大连116023
摘要点击次数: 1582
全文下载次数: 8
中文摘要:
      基于同伦映射的思想,改进了求解非线性反问题的梯度正则化算法。通过路径跟踪有效地拓宽了梯度正则化算法求解的收敛范围。对于正则化参数的修正,通过引入拟Sigmoid函数,提出了一种下降速率可调的连续化参数修正方法,在保证迭代稳定的条件下,得到较好的计算效率,同时保证该算法具有很好的抵抗观测噪声能力。实际算例表明,该方法收敛范围宽,计算效率高,在存在较强观测噪声的条件下也能得到很好的反演结果。
英文摘要:
      Based on idea of homotopy mapping, an improved gradient regularization algorithm was developed. By using this path-following algorithm, the convergent bound of the gradient regularization method was efficiently widened. Moreover, a Sigmoid function was adopted to adjust the regularization parameter, by using this function, the efficiency and the stability of computation procedure were highly improved, while observational noises could also be resisted effectively. Numerical examples showed that the convergence bound of this algorithm is wider than normal gradient regularization algorithm, and the average efficiency is improved about 40-90%, besides, even though observational quantities were contaminated heavily by noise, an appropriate result could also be found.
查看全文  查看/发表评论  下载PDF阅读器
您是第13576685位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计