欢迎光临《计算力学学报》官方网站!
张义民,张雷.结构系统可靠性优化设计的神经网络方法[J].计算力学学报,2005,22(3):257~261
本文二维码信息
码上扫一扫!
结构系统可靠性优化设计的神经网络方法
Reliability-based structural optimization using neural network
  修订日期:2003-07-22
DOI:10.7511/jslx20053052
中文关键词:  非正态随机参数  可靠性优化设计  随机摄动技术  Edgeworth级数  MCS—NN
英文关键词:non-normal random parameters,reliability-based optimization,the probabilistic pertur-)bation method,the Edgeworth series,MCS-NN
基金项目:国家自然科学基金(50175043)资助项目.
张义民  张雷
吉林大学南岭校区机械科学与工程学院,吉林长春130025
摘要点击次数: 1621
全文下载次数: 8
中文摘要:
      针对具有非正态随机参数的可靠性(优化)设计,提出了随机摄动-Edgeworth级数方法,采用该方法将可靠性概率约束转化为等价的确定型约束,可以迅速准确地获得优化设计信息。针对具有多失效模式的结构系统可靠性优化设计,提出了随机模拟一神经网络方法(MCS—NN),将随机模拟方法与神经网络技术有机结合,为结构系统可靠性优化设计提供了一种新方法。
英文摘要:
       In this study two methods are examined. In the first one, the probabilistic perturbation method and the Edgeworth series are employed to give the theoretical formula for reliability-based optimization with non-normal random parameters. Therefore, the probabilistic constraints are transformed into deterministic constraints, and then the reliability-based optimal design parameters could be obtained accurately and quickly. In the second one, neural network (NN) and Monte Carlo simulation (MCS) are applied in reliability-based structural optimization with more failure modes. The neural network is used to simulate the relation expression between the design parameters and the structural reliability based on Monte Carlo simulation. Therefore, the structural probabilistic constraints are transformed into a single equivalent deterministic constraint approximately by NN, and then the process of reliability-based optimization can be implemented conveniently.
查看全文  查看/发表评论  下载PDF阅读器
您是第13597601位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计