欢迎光临《计算力学学报》官方网站!
刘德义,申光宪.三维弹性快速多极边界元法[J].计算力学学报,2004,21(4):464~469
本文二维码信息
码上扫一扫!
三维弹性快速多极边界元法
Three-dimensional elastic fast multipole BEM
  修订日期:2002-10-28
DOI:10.7511/jslx20044082
中文关键词:  边界元法  多极展开法  广义极小残值法  误差分析
英文关键词:Boundary Element Method,fast multipole method,GMRES error analysis
基金项目:国家自然科学基金(50075075)资助项目.
刘德义  申光宪
燕山大学轧机研究所,秦皇岛066004
摘要点击次数: 1666
全文下载次数: 8
中文摘要:
      将静电场多极展开法和广义极小残值法结合于三维弹性问题的边界元法,使其求解的计算量及所需内存量同节点的自由度总数成正比,变革计算结构,加快求解速度以适应大规模数值计算。两者结合的关键点在于边界元法基本解的合理分解,并用广义极小残值法(GMRES)求解方程。轧机支承辊变形场大规模数值算例的总自由度数首次达N=34008并获得成功。清晰地描述了支承辊和工作辊接触区的辊型。
英文摘要:
      In this paper, we incorporate fast multipole method and GMRES to Boundary Element Method, and use this method to solve 3-D elastic problems. In this case, the memory and operations requirements of a problem with N unknowns are proportional to N, it can speed up radically the computation and adapt to large scale numerical computing. The key of the method is mathematical decomposition of fundamental solutions of three-dimensional elasticity, to form the error function relying on the regular of error distribution, and use the generalized minimum residual algorithm(GMRES) to find the solution of matrix equation. By a large scale test ,we get the balance point of the traditional BEM and fast multipole BEM up to 1700~1800 degrees of freedom. The fast multipole BEM needs less memories then traditional BEM. This method is effective, and has extensive application prospect.
查看全文  查看/发表评论  下载PDF阅读器
您是第13579141位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计