欢迎光临《计算力学学报》官方网站!
刘靖华,范益群,钟万勰.粘弹性固体的精细积分有限元算法[J].计算力学学报,2004,21(1):109~114
本文二维码信息
码上扫一扫!
粘弹性固体的精细积分有限元算法
Precise integration finite element algorithm of viscoelastic solid
  修订日期:2001-09-25
DOI:10.7511/jslx20041022
中文关键词:  粘弹性固体  精细积分有限元  状态空间方程  固体力学  本构方程  有限元法
英文关键词:viscoelastic solid constitutive equation,state space equation,precise integration finite element,
基金项目:
刘靖华  范益群  钟万勰
[1]上海交通大学建筑工程与力学学院,上海200240 [2]上海隧道工程与轨道交通设计研究院,上海200070 [3]大连理工大学工程力学系,辽宁大连,116024
摘要点击次数: 1606
全文下载次数: 8
中文摘要:
      粘弹性固体本构方程的数学表达式分为微分型和积分型两种,其数值求解主要是时域上离散计算。文中从微分型表达式出发导出其状态空间方程的数学表达式,通过严格推导论证了它与微、积分型表达式的等价性;引入状态空间方程,从而利用精细积分格式来求解粘弹性固体本构方程;给出了粘弹性固体本构方程的精细积分有限元算法,为求解粘弹性固体本构方程的数值解提供了一个新的途径,具有计算简便,求解精度高等优点。
英文摘要:
      The mathematical representation of viscoelastic solid constitutive equation can be written into the differential equation and integral equation,and their numerical solutions always depend on discrete of time domain.From the differential representation, the mathematical representation of the state space equation deduced, and the equivalence of these equations is given by strictly derivation.Using the state space equation, the constitutive equation can be solved by precise integration.And a precise integration algorithed finite element mothed is proposed. The present algorithm can be used for solving viscoelastic solid constitutive equation and has advantages of high precision and convenient calculation.
查看全文  查看/发表评论  下载PDF阅读器
您是第13574222位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计