欢迎光临《计算力学学报》官方网站!
张素英,邓子辰.非线性动力方程的增维精细积分法[J].计算力学学报,2003,20(4):423~426
本文二维码信息
码上扫一扫!
非线性动力方程的增维精细积分法
Increment-dimensional precise integration method for nonlinear dynam icequation
  修订日期:2002-04-22
DOI:10.7511/jslx20034080
中文关键词:  非线性动力方程 增维精细积分法 动力系统 非齐次动力方程 数值计算 线性定常结构
英文关键词:precise integration method,increment dimensional m ethod,nonlinear dynamic equation
基金项目:国家自然科学基金 (1 9872 0 57),霍英东青年教师基金 (71 0 0 5),教育部高校博士点专项基金(2 0 0 1 0 6990 1 6),航空科学基金 (0 0 B530 0 6),大连理工大学工业装备结构分析国家重点实验室开放基金资助项目
张素英  邓子辰
[1]西北工业大学工程力学系,西安710072 [2]大连理工大学工业装备结构分析国家重点实验室,大连116023
摘要点击次数: 3707
全文下载次数: 9
中文摘要:
      对线性定常结构的动力系统提出的精细积分法,能得到在数值上逼近于精确解的结果。但是对于非齐次动力方程却涉及到矩阵求逆的困难,而且通常与时间有关的非齐次项不能进入精细积分的细化过程。采用增维的方法,将非齐次动力方程化为齐次方程,在实施精细积分的过程中不必进行矩阵求逆。这种处理方法对于程序实现和提高数值计算的稳定性十分有利,而且在大型问题中可明显提高计算效率,数值算例显示本文方法是有效的。
英文摘要:
      The precise integration method proposed for linear-invari ant dynamic system can give precise numerical results approaching to the exa ct solution at the integration points. However, it is more or less difficult wh en the algorithm is used to the non homogeneous dynamic system due to the in verse matrix calculations, and the non homogeneous vector with relation to tim e variable do not be considered in the process of division of the precise integ ration. In this paper, the original non homogeneous equation is converted into homogeneous equation by means of increment dimensional method. Then, precise i ntegration method can be used and the inverse matrix need not be computed in th e integration. The present method is not only benefit to both programming impl ementation and improving the numerical stability, but also more efficient t o the large scale problem. The numerical examples show the validity and effici ency of the method in this paper.
查看全文  查看/发表评论  下载PDF阅读器
您是第13574533位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计