黄斌,常晓林.边界约束刚度不确定的结构振动特征值[J].计算力学学报,2002,19(4):427~430 |
| 码上扫一扫! |
边界约束刚度不确定的结构振动特征值 |
Vibration eigenvalues of structures with uncertain boundary restrict stiffness |
修订日期:2001-01-19 |
DOI:10.7511/jslx20024091 |
中文关键词: 特征值,边界约束刚度,不确定 |
英文关键词:eigenvalues,boundary restrict stiffness,uncertain |
基金项目:国家自然科学基金 (5 0 0 3 80 10 )重点项目 |
黄斌 常晓林 |
武汉理工大学土木工程与建筑学院 武汉430070
(黄斌) ,武汉大学水电系 武汉430072
(常晓林) ,武汉理工大学土木工程与建筑学院 武汉430070(瞿伟廉)
|
摘要点击次数: 1547 |
全文下载次数: 8 |
中文摘要: |
利用摄动法 ,将随机的微分方程和边界条件化为一系列的确定性微分方程和边界条件。运用有限元离散方法 ,推导了统计特征值的二阶摄动近似表达 ,用算例对本文方法进行了说明并和 Monte-Carlo模拟法结果进行了比较 |
英文摘要: |
The statistics of eigenvalues of structures with random boundary restrict stiffness have been studied in the paper. Using the perturbation method, the stochastic distributed parameter differential equations plus boundary conditions, that govern the eigenproblems, have been changed as a series of deterministic differential equations and boundary conditions. Then the differential equations and boundary conditions are discreted utilizing finite element method. Because the different order perturbation equations have the same FEM meshes, it is relatively easy to discrete them. Therefore, the first order eigenvalues sensitivity and the second one can be derived through solving deterministic algebraic equations. After two order eigenvalues sensitivity are calculated, the similar statistic expressions of random eigenvalues considering uncertain boundary stiffness are set up. The excellent calculating methods of eigenvector sensitivity have been given and the precision of statistic eigenvalues obtained using the paper's method may be guaranteed. At the end, two examples are illustrated the present method. Compared the results with Monte\|Carlo method show that the present results are accepted. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|
|