欢迎光临《计算力学学报》官方网站!
马坚伟,朱亚平.多尺度有限差分方法求解波动方程[J].计算力学学报,2002,19(4):379~383
本文二维码信息
码上扫一扫!
多尺度有限差分方法求解波动方程
A new method of multiresolution finite difference for wave equation
  修订日期:2000-09-12
DOI:10.7511/jslx20024082
中文关键词:  波动方程 小波变换 多尺度 有限差分 维声波方程
英文关键词:wave function,wavelet transform,multiresolution,finite difference
基金项目:国家自然科学基金资助项目 (19872 0 3 7)
马坚伟  朱亚平
[1]清华大学工程力学系,北京100084 [2]CenterofWavePhenomenon,DepartmentofGeophysics,ColoradoSchooolofMines,Colorado,80401,USA
摘要点击次数: 1606
全文下载次数: 10
中文摘要:
      小波分析是多尺度分析方法,本文利用具有紧支集的正交小波变换对有限差分方程进行空间多尺度近似,提出适合于层状介质波传问题数值计算的多尺度有限差分方法,将波动方程的求解转换到小波域中进行。利用小波基的自适应性与消失矩特性,有效减少了计算量、提高了稳定性,扩大了可求解的速度范围。地球物理勘探中的数值实例显示了算法具有良好效率。
英文摘要:
      Wavelet transform is one kind of multi\|resolution analytical methods. This paper is devoted to the resolution of wave function, using a spatial multi\|resolution approximation to the finite differential scheme generated by the orthogonal compactly supported wavelet transform. A new method named Multi\|resolution Finite Difference is proposed to solve the problem of wave propagation in the multi\|layered medium. It is thus that the problem is solved in the wavelet domain rather than the traditional Euclidean space. Due to adaptive and vanishing moment property of the wavelet basis, it is a promising method because of some advantages such as large velocity range, little computational burden, and efficiency of convergence and robustness. The numerical results show effectiveness and potential of the method. A new solution procedure for the research of wave function is put forward.
查看全文  查看/发表评论  下载PDF阅读器
您是第13578522位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计