欢迎光临《计算力学学报》官方网站!
张效松,叶天麒.边界积分方程——非连续边界元度散方法及其应用[J].计算力学学报,2001,18(3):331~334
本文二维码信息
码上扫一扫!
边界积分方程——非连续边界元度散方法及其应用
Several problems associated with discontinuous boundary elements
  修订日期:1999-06-29
DOI:10.7511/jslx20013067
中文关键词:  非连续边界元 配位点 自适应边界元 误差指示 平面问题
英文关键词:discontinuous boundary elements,collocation points,adaptive BEM,error indicator
基金项目:
张效松  叶天麒
[1]石家庄铁道学院力学系,河北石家庄050043 [2]西北工业大学飞机系,陕西西安710072
摘要点击次数: 2006
全文下载次数: 8
中文摘要:
      利用非连续元离散边界积分方程,有效地解决了“角点效应”问题,对影响非连续元精度和分析效率的几个问题从数值计算的角度进行了讨论,将非连续边界元用于自适应边界元分析,给出了自适应边界元误差指示确定的一种方法,通过对具体实例分析表明了给所方法的可行性,。》
英文摘要:
      Accuracy of discrete model and optimum position associated with discontinuous boundary element analysis are studied. It is demonstrated from the numerical implementation that optimum collocation factor for the interpolating function presented in this paper is 0.5 and the proper choice of superparametric or subparametric elements can improve the efficiency of the boundary element analysis. The discontinuous boundary elements are employed for analysis of adaptive boundary elements. The discontinuity of physical variables for adjacent elements, which is extrapolated from collocation points, is taken as error indicator. The numerical results presented in this paper illustrate the feasibility of the proposed approach.
查看全文  查看/发表评论  下载PDF阅读器
您是第15455282位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计