张耀明,孙焕纯.弹性力学平面问题的无奇异边界积分方程[J].计算力学学报,2001,18(3):321~325 |
| 码上扫一扫! |
弹性力学平面问题的无奇异边界积分方程 |
Nonsingularity boundary integral equationsfor elastic plane problems |
修订日期:1999-12-15 |
DOI:10.7511/jslx20013065 |
中文关键词: 边界元 无奇异边界积分方程 弹性力学 平面问题 |
英文关键词:elasticity problems,boundary element,nonsingula boundary integral equation |
基金项目: |
张耀明 孙焕纯 |
[1]山东工程学院数理系,山东淄博255012 [2]大连理工大学工程力学系,辽宁大连116023 |
摘要点击次数: 1609 |
全文下载次数: 9 |
中文摘要: |
将弹性力学平面问题归化成无奇异边界积分方程,避免了传统的边界元法中的柯西主值(CPV)积分和Hadamard-Finite-Parts(HFP)积分的计算,建立完整的数值求解体系。 |
英文摘要: |
The conventional boundary integral equation (BIE), which is generally expressed in terms of singular integrals in the sense of the Cauchy Principal Value(CPV), and the derivative BIE, which is similarly expressed in terms of hypersingular integral in the sense of the Hadamard Finite-Parts(HFP), both can be written as nonsingular integral equations. A systematic approach for circumventing numerical solution is established by using three order Lagrange interpolation collocation point methods. This approach leads to that calculating of CPV and HFP integral is avoided in the BEM. |
查看全文 查看/发表评论 下载PDF阅读器 |