欢迎光临《计算力学学报》官方网站!
朱菊芬,陈万吉.薄板几何非线性中的精化元方法及膜闭锁问题[J].计算力学学报,1995,12(1):
 
薄板几何非线性中的精化元方法及膜闭锁问题
Refined element method and membrane locking for geometric nonlinear analysis of thin plates
  
DOI:10.7511/jslx19951014
中文关键词:  薄板/几何非线性,三角形单元,精化直接刚度法,膜闭锁
英文关键词:thin plate/geometric nonlinear,triangular element,refines direct stiffness method,membrance locking.,
基金项目:国家自然科学基金
朱菊芬  陈万吉
大连理工大学工程力学所
摘要点击次数: 1626
全文下载次数: 0
中文摘要:
      基于放松单元间协调条件的大变形变分原理和全局拉格朗日方法,推导了几何非线性精化三角形薄板单元。对几何刚度矩阵,通过引入特殊的单元位移函数,有效地消除了薄板弯曲问题中伴生的膜闭锁现象。数值结果表明该单元在几何非线性分析中既能消除膜闭锁又具有较高精度。
英文摘要:
      Based on the total Lagrangian description and large deformation variational principlewith releasing constraint conditions of inter-elements continuity,A geometric nonlinear anal-ysis of refined triangular thin bending element is newly developed.By introducing special ele-ment displaeement functions,the additional menbrance locking phenomenon is deleted effec-tively in the geometrical etiffness matrix. The numerical results show this element can deletemembrance locking and obtain solutions of high accuracy in the geometrical nonlinear analy-sis.
查看全文  查看/发表评论  下载PDF阅读器
您是第13574186位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计