张近东.弹性板边界元中计算边界高阶导数的渐近收敛积分方程[J].计算力学学报,1992,9(3): |
| |
弹性板边界元中计算边界高阶导数的渐近收敛积分方程 |
The Asymptotically Convergent Integration Technique for Calculating the Higher-order Derivatives at Boundary in Kirchhoff Plate Problems |
|
DOI:10.7511/jslx19923049 |
中文关键词: 边界积分方程,高阶奇性,渐近摄动 |
英文关键词:boundary integral equation, hyper-singular, asymptotic perturbation |
基金项目:国家自然科学基金,项目号19072010 |
张近东 |
北京航空航天大学宇航学院 100083 |
摘要点击次数: 1665 |
全文下载次数: 0 |
中文摘要: |
本文针对板弯曲边界元方法中计算边界曲率等高阶导数项时边界积分方程中出现的高阶奇异积分项,通过对未知挠曲函数作渐近展开并加以适当摄动,获得了渐近收敛的边界积分方程。采用这一方法计算板边界上的曲率分布,获得了满意的数值结果。 |
英文摘要: |
By introducing the concept of asymptotic perturbation, a convergent boundary integral equation approach for calculating the higher-order derivatives at boundary in Kirchhoff plate bending problems is presented, which effectively solves the problem of so-called hyper-singular kernal functions appearing in such integral equations. Satisfactory numerical results are obtained by applying the technique to the calculation of curvature terms at plate boundary. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|
|