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Abstract: Symplectic elasticity has been widely used to find the exact solutions of various boundary value problems

in elasticity.compute the surface wave modes,and predict surface wrinkles in multilayer hyper-elastic films. Here,

we show that the symplectic analysis framework can also be applied to surface wrinkles in constrained dielectric

elastomers, where the mechanical deformation is tightly coupled with the electric field. The critical voltage for

wrinkles can be solved as a symplectic eigenvalue problem after introducing the dual variables to the primary

variables of mechanical and electric displacement vectors. We employ the extended Wittrick-Williams (W-W)

algorithm and precise integration method to solve the eigenvalues of the formulated symplectic eigenvalue problem

accurately and efficiently. The symplectic analysis is validated by comparing the wrinkle voltage and wavenumber

with benchmark results of wrinkles with and without surface energy. The symplectic framework is concise and

applicable to other instability problems such as layered dielectric elastomers, magnetoelastic instabilities and the

micro- and macro-instabilities of laminated composite structures.

Key words: symplectic;dielectric elastomers; wrinkling ; eigenvalue analysis

1 Introduction

Symplectic elasticity, pioneered by Prof.
Zhong et al. ", represents a theorical framework of
transferring elliptic partial differential equations into
Hamiltonian systems of first ordinary differential
equations via mimicking the time coordinate with one
spatial coordinate. Over the past three decades,
symplectic analysis has significantly advanced the

complex problems, from
[4-7]

analysis of various
solving boundary value problems in elasticity

and plates”® " to understanding the wave propagation

12-15]

in layered materials" and predicting surface

wrinkles in multilayer hyper-elastic f{ilms"'%17!,
Recent efforts have been devoted to extending the
analysis beyond purely mechanical systems by
incorporating multphysics couplings, such as

guided waves in magneto-electro-elastic laminated
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structures\ 18] .

The analysis becomes even more challenging
when themultiphysics interactions are coupled
with large deformation. Examples include surface
wrinkles and creases in a constrained dielectric

1923) where the voltage difference

elastomer layer"
between the top and bottom surface and the
mechanical confinement create driving force for
the surface instabilities. The instability induced
surface patterns can dynamically change the
surface topography and generate new functions,
such as on-demand fluorescent patterning*". The
surface instabilities, including the critical wrinkling
voltage and wrinkling wavelength have also been

shown modulated by surface energy??:?%,

an
important factor for very soft materials. The rich
deformation patterns and promising applications
have attracted numerous theoretical attentions to
investigate the surface instabilities in the dielectric
elastomers %,

Here,we will show that the analysis of surface

wrinkling in constrained dielectricelastoemers can be
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formulated as a symplectic eigenvalue problem,

which can be accurately and efficiently solved by = XZI_

leveraging the powerful tool developed in the X

literature. The rest of the paper is organized as I W

follows. Section 2 is for the development of = XZ’ —‘—
symplectic eigenvalue equations for wrinkling X

instabilities of a dielectric elastomer layer. We Fig.1 Problem setup of the wrinkles in constrained dielectric

briefly reviewed the extended W-W algorithm for
solving symplectic eigenvalue problems in Section
3. In Section 4,we apply the symplectic method to
the

constrained dielectric elastomers with and without

analyze critical wrinkling voltage of a
surface tension. Some concluding remarks are

drawn in Section 5.

2 Symplectic equations for wrinkling
instabilities in a dielectric elastomer
layer

We consider one-dimensional (1D) wrinkling
instabilities in a two-dimensional (2D) dielectric
elastomer layer (Fig.1), where surface wrinkles
can be triggered by applying a voltage to the
structure. The wrinkling instabilities have been
widely studied through experiments, theories, and
simulations. Here we derive asymplectic eigenvalue
analysis framework for the problem and provide a
powerful and accurate numerical method to solve the
highly nonlinear transcendent equations associated
with the eigenvalue problems. We adopt the same
free energy functions for ideal dielectric elastomer

(2930 and assume the dielectric

in previous studies
elastomer layer under plane strain condition, such

that

W:%(L —3—21nj>+% (] — 17—

éng}F[}EKEL (D

where s1is the shear modulus, A; the Lame constant, ¢
the permeability, I, = A3 + A% + 1, A; the principal
stretches and J the determinant of the deformation
gradient tensor F=9Jx/dX,X and x denote the
reference and deformed configurations, respectively,

E=—(2¢/9X) the electric field vector at the

reference configuration,and ¢ the electric potential.

elastomer (Top is the reference state of the dielectric elastomer
layer and bottom is the schematic of the wrinkled dielectric

elastomer layer at the critical voltage)

An augmented free energy function can be
derived from Eq.(1) by employing the electric
D=9W/JE as independent

displacement, an

variable through the Legendre-type transform"*"

Q:ful —3—21nj>+%mj—1>2 +

1

E]”D-(CD) (2

where C=F"F is the right Cauchy-Green tensor.
In this work, we will develop thesymplectic
analysis based on free energy function in Eq.(2).
It has been shown by Zhang et al."® that the
positive definite nature of the free energy function
is critical for the eigenvalue solver used here. It
should be
problems can still be formed using Eq.(1).

noticed that symplectic eigenvalue
The first Piola-Kirchhoff stress and electric

filed vector can be expressed as

P=pF—[p—2 J(J—DIF "+ 'J'F(DRD)—

%FU”(D-(CD»F*T (3)

H—1]"cp )

where D@D represents the tensor product of
vector Dand D « (CD) denotes dot product of the
vector D and CD.
The governing equations of the system are,
DivP=0, DivD=0, CurlE=0 (5
To analyze the wrinkling solution, we decouple
the deformation mapping and electric potential into a

uniform solution and a perturbed solution™®”,

suchthat
Ii:8i7'X7'+(A2_1)81'2X2+aui(X19X2) (6)
B V(X + a@(X)L X0 %

where u; denotes the perturbed displacements, ¢
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represents perturbed electric potential field,and «
is a dimensionless variable. The uniform deformation
can be large while the perturbed solution is small,
corresponding to a small a.

Since electric displacement is the independent
variables,we further decouple it into a summation

of a uniform and perturbed solution,

[l <[c]
D= +a €))
D &

We compute the Taylor series of the electric
field vector and the first Piola-Kirchhoff stress in
terms of a and keep the 0" and 1°' order, which
are given by

E=E’+E', P=P’ + oP' (9,10
where E°,E',P°, P' are given in Appendix A.

Before wrinkle instabilities occur, the stress-

free boundary condition of the top surface,such as

P, =0, leads to the following equation

phy — 11,3 +%<’1<D2>2 —0  an

where II,=p—2A;A; (A; —1). The solution of Eq.(11)
gives the stretching ratio (1;) along the x, for a

given electric displacement D3

ho = { [y — 5 DDA+ p] 4

(o= (DD} [T200 + ] (12)

Noting that the electric field can also be computed
from the electric potential as E=— Grad($¢), we
can find the relation between DY and the electric
potential as

Dy =—cx,'h'V (13)
In our analysis,we will use DY as an independent
variable and the corresponding electric potential
will be computed using Eq.(13) after A, is solved
in Eq.(12).

We next analyze the equilibrium equations of
the 1°" order of a. Since we focus on the 2D wrin-
kles,CurlE=0 only has one non-zero component,
leading to the following equations
Liyuin + Lizz wr.22 + Lowp uzae +

<UD (AL = R262.) =0 (14)

Loss ws.o2+ Lowi tony + Lz wi o= 0 (15)
e —E A DY A ui s —DIAL g 0n) =0

(16)

€, /30X, +9&/IX,=0 7

Lin=A5+2 p4< (DDA
Ly =(p+ <A, (DH?)

Loy =ty Logo =X+ p+pA75)
Liy=Loy= A, +pAz")

Eqgs.(14,15) are the stress equilibrium equation

where

and Eqs.(16,17) are the Maxwell’s equations, cor-
responding to CurlE=0 and DivD= 0, respectively.
The boundary conditions are given by
w (X1,0=u(X,,0=¢(X,,00=0 as)
P (X, h)=¢ (X, ,he)=0
Poy (X5 ho) =7 ui,2 a»
where 7 is the surface energy and ¢ is a function of
u s uz» and & , &,. Similar equations have been de-
rived before for fully incompressible dielectric elasto-
mers- %
To search for the wrinkling solution, we express
the variables in Fourier space,such that
w=exp(ik X DU (X3), up=exp(ik XU, (X)
& =exp(ikXE (X)), & =exp(ik X ) E,(X2)
¢ =exp(ik X)) W(X,)
where k is the wavenumber. It should be noted that
the Fourier modes only apply to the onset instability
of the surface. It can be seen from Eq.(19) that &, is
not an independent variable and can be expressed as
Ei=i(k DE, (20)
In Fourier space, ¥( X;) can be solved from
Eq.(9) as
V—— kPG B CCDIN R DU — DU,
(¢2D)
We further multiply (ik ') to Eq.(16) and re-
arrange equilibrium equations in Eqs.(14~16) in the
Fourier space as
Ko q + (K —Ki2)q' —Kig=0 (22)
where g=[U, U, B, ]".(#) =d(#)/dX,.(#)"=
d?(#)/dX}, Kyys Koy Kips and K;, are given in
Appendix B.
We next introduce the dual variable of q
p=—"(Kpq+Kyq (23)
The physical meanings of the dual variables are given
as follows
p=—Pu.p=—Put 'DIE,, p =T+ DI,
QD

where P, and P,, are the Fourier transformations of
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the Py, and P, ,respectively. The governing equations Fi=(H,+G H,)F (29a)
can then be expressed in terms of state variable V= Gi=H,G+GH!'+GH,G —H, (29b)
Lq.p] as '——F/"H,, F (29¢)

V'—HV. H— {qu qu} (25) where H,,,» H,, and H,, are given in Eq.(25) and the
H,, H,, initial conditions are Fy (1)) =1,G,(t,) =Q,(t,) =0.
o gH g1
where Hy,=—Hp ="K Ko We define the eigenvalue count J;(D9; k) as the
- _ —1
Hy == (Ki — Ki: Kz, Ko) eigenvalue count with the specified boundary con-
qu - _KZEI

It can be verified that H is a Hamiltonian matrix that

0 I
satisfies A1HAHH,A[ | 0}

with I as the identity matrix.
The boundary conditions in the Fourier space

can be described as

U (00=0, U, (=0, p (0)=0 (26)
pl(ho):O’ pz(h()):(71 35’2+7k2U2
p,(h)=<"DIU, 7

3 Extended Wittrick-Williams (W-W)
algorithm for symplectic eigenvalue
analysis

The symplectic eigenvalue problems defined in
Eqgs. (25~27) can be effectively and accurately solved
by integrating the precise integration method (PIM)
and the extended Wittrick-Williams ( W-W) algo-
rithm"™ . The algorithm has been successfully applied
to various engineering applications, such as waves

[12-15]

propagation in multilayered structures , surface

[16,17]
i

wrinkles in neo-Hookean bilayer structures and

guided waves in magneto-electro-elastic laminated

18] Here, we will briefly review the PIM

structures
method and W-W algorithm and refer readers to
literatures"*"**) for more detailed analysis.

W-W algorithm is based on the eigenvalue
count, which represents the number of eigenvaluesin
the system under given boundary conditions. The
algorithm first rewrites Eq.(25) in the mixed energy
format. For a layer within the interval [t;,t,]. if
state variables q,, p, are given, the rest state variables
q, > P, can be expressed as

q,=Fq,—Gp,. p=0Q,q,+Fi'p, (28
where Fi, Gy and Q; are complex matrices and can

be

equations

computed from the following differential

ditions of q,=0 and q;;, =0 for a given wavenum-
ber k.

For two consecutive intervals [t;,t;] and
[ty ty ) with given Ji, F1, G, and Q, for layer I as
well as Ju, Fu, Gy and Qy for layer II,the relation

for g, p,, and q,, p, can be described agl12:18.15.18]

F,=F,(I+G,Q,) " 'Fy (30a)
GHI:CH+FII(G171+QH)71F111—1 (30b)
Q111:Q11+F#(G1+Q51)71F1 (30c)

and the eigenvalue count

Ju (D2 k) =] (D3 s k) + Ju (D35 k) +
{6y +Qu+FiG,'F) (31

where s{ # } denotes the number of negative ei-
genvalues in matrix #.

In general, the eigenvalue count for a finite
layer is unknown. To address this issue,the given
layer structure will first be divided into it into 2N
very small sub-layer and then combined through
the precise integration method (PIM). A large N
is chosen to make the finest sub-layer thin enough
to have a 0 eigenvalue count ( J¥, = 0). The
matrix F),, Gy, and Q, in the finest layer can be
( see
Appendix C). With this information and the

calculated with truncated Taylor series
combination process of two intervals to into a
larger one (see Appendix C),it only takes N"
iterations to calculate the eigenvalue count of a
finite uniform layer, which forms an efficient and

method as the
sl

accurate and known precise
integration method (2" algorithm
After applying the PIM method, we can
obtain the relationships of the state variable of the
dielectric elastomer layer between the top and
bottom surfaces as
POZ_Qo.hquFFonh p, (32a)
q,=F,,q,7Gy,p, (32b)
We first compute the eigenvalue count due to the
boundary condition at X;="h, which can be writ-

ten in the matrix form as



1 KB BT FARAEE T kT A RN B R PR YT RO M B AT 213

0 0 0
p,=R.q,. R= [o vk <1D3J (33)
0 <'Dy 0
From Eq.(37b),we can further obtain by no-

ticing q,=0 .
p,= G4, 34)

The total stiffness matrix at the top surface
can be expressed as
p,=R.q,. with R,=G,,—R, (35)
Therefore, the eigenvaluecount by incorpora-
ting the top surface boundary condition is
Ji=1J,+sign(G,;—R,) (36)
We next consider the boundary condition at

X;=0 and solve stiffness matrix from Egs.(32a,

32b,33) as
p():_ROqO (37)

where Ry=(Q,,, — FoH.h(I_ R>G<J.h)71RsFo.h)'
At X, = 0, the new boundary condition is
p,=0,leading the final eigenvalue count as

12:J1+Sign((Ro)33) (38)

4  Wrinkling analysis in the constrained
dielectric elastomer layer

In this section, we apply the developedsym-
plectic eigenvalue analysis to the computation of
surface wrinkling in the constrained dielectric
elastomer layer. It has been shown that the bulk
modulus play an important role in determining the
critical voltage. We first compute the critical
voltage as a function of the wave number for two
representative materials with different Lame
constants and same shear modulus and set the
surface energy ¥=0. As shown in Fig.2, the
normalized critical voltage is larger for the case
with a larger bulk modulus. The large bulk
modulus can be seen as a good approximation of

incompressible condition. Our simulation shows

that the critical voltage reaches a plateau of +/2 at
the short-wave limit, in great agreement with
previous analytical solutions"".

As shown in Fig.2,the critical voltage mono-
tonically decreases with the wrinkle wavelength
and eventually reaches a plateau. We next focus
on the short-wave limit case, which is realized in
the numerical simulations by setting a large wave-
number of 100h; . We vary the bulk modulus and
show the normalized critical voltage continuously

increases as the increase of the bulk modulus and

has as limit of +/2 (Fig.3). The comparison be-

tween the symplectic analysis and analytical solu-
tions™?"?! is also presented in Fig.3,showing very
good agreement between each other. It should be
noticed that the analytical solution is based on
approximated theory, which is the reason of the

small difference shown in Fig.3.

1.50 1
— A /=10
145} — 2;/=1000 e
=
Iéu 1.40
S 13sh
1.30 _—~
125 L L 1 ]
0.0 0.5 1.0 1.5 2.0

U/h

Fig. 2 Bifurcation eigenvalue spectrum for the two neo-Hookean

layer problems with different Lame constants

.51
14
2
S 13t
<
= 1.2 1
= —— Symplectic analysis
Lo f - - Analytical solution
!
1.0 L L L ! )
10° 10! 10° 10° 10°

K

Fig. 3 Critical voltage Vw for the onset of wrinkling

(orange dashed line is the analytic solution by Huang2"))

Lastly, we examine the effect of surface energy
on the critical voltage for surface wrinkling. Our
method is very easy and natural to incorporate the
surface energy term, which is given by the Yk’
term in Rsin Eq.(38). A few representative cases
are shown in Fig.4. For a finite surface energy, the
critical voltage first decreases as the decreases
with the wavelength and then increases. This is
due to the small wavelength tends to increase the
surface area and thus the system energy. Therefore,a

minimum voltage will exist. Our results are also in

great agreement with the previous analysis'?™.
1.50 y/uh
— 0.003
148 — 0.002
0.001
7% 1.46 — 0.000
<
S 1.44
142
1.40 ! ! : !
0.0 0.5 1.0 1.5 2.0
I/h

Fig. 4 Effect of surface energy on the onset wrinkling bifurcation
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S Concluding remarks Pl —pu,, Jr(%;l (DY >2+HOA§1) wra ' DYE,
We have successfully demonstrated the (Ade)
applicability of thesymplectic analysis framework in
investigating surface wrinkles in constrained dielectric Phr=Q e+ ud D u,+ ()\L 2x—1)—
elastomers, where the mechanical deformation is 1 , .
tightly coupled with the electric field. The unique PR (D: )Z> it 28 (Atd

symplectic structure makes it possible to solve the
nontrivial boundary value problem efficiently and
accurately in the eigenvalue analysis of wrinkles
through the extended W-W algorithm and the precise
integration method. We validate that the symplectic
analysis can obtain the exact wrinkle voltage and
wavenumber compared with benchmark results of
wrinkles with and without surface energy. The single
layer analysis in the current work can be easily
extended to multilayer structures with and without
periodical boundary condition, which is ready for the
analysis of the stability of layered electroactive

L [35-37]

polymers and micro- and macro-instabilities

in composite laminated structure instabilities™* "%,
Furthermore, the concise mathematical structure of
the symplectic analysis allows it adaptable to various
multiphysics coupling problems, such as the ex-

ploration of magnetoelastic instabilities**,
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Appendix A Taylor series of the electric field
vector and the firstPiola-Kirchhoff stress

. 0
E’=« (AD
D32,
. E] )\51+D2A§l(u1,2+)\2u2,1)
El:( { :' (A2)
82A2+Dg(u2.27}\2u1,1)
Pl =42, (k=1 =3¢ A (DD’ (A3a)
P =ph,— I A"+ (DY (A3b)
P]OZZP?]:O (A3C)
Pll| :()\1}\3+2,u+(71( Dg)z)\z)u|1+(2 )\[‘)\27
Aj‘iiéil(Dg)z)Mz,ziéil(Dg))\ng (A48.)

2
Ph=(u+C 5 (DD u+ (¢ (DD +

oA us + < (DDA E, (A4b)

Here we introduce Iy =p— A A, (X, — 1) to sim-
plify the formula.

Appendix B The stiffness matrices in Fourier

space
[ bR D! 0 (¢ DAk Di
K22: 0 Ar"‘ll +ﬁv )\;Z 0
— (< 'DIA R D 0 TR
(BD)
—1 02
0 %‘FHO)\EI 0
—1 02
AL(ZAQ—D—((% 0 0
0 0 0
(B2)

Mat2p+ (DDA, 0 (CIDIAk D

K, =F 0 2 0

—( "Dk DI 0 kR
(B3)
Appendix C The precise integration method
for the eigenvalue count

At the finest level, the length of the interval
is T =h/2V. Since t<<1,we can approximate the

matrices Fd,, GY,, and QY, through Taylor se-

riest

0),=07+0,c°+0,c°+0,7 (CD
Gl,=vrtrntryrdt+y (C2)
F),=I+F} (C3)
FY=@7r+o,+o+or (C4)

where

0,=—H,.v,=—H,, ¢=H,

0,——(9'H,,+H,®)/2

y,=(H,y, +vH!)/2

0, =(H,®, +7H,)/2
s=—(0H,,+H,0,+0 H,0)/3

v,=(H,Y, +v.HI+vH,v)/3

¢ =(H,Q,+7.H,+7H,®)/3
\=—(¢.H,,+H,o,+9¢'H,¢ +¢H,®,)/3
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Y, =(H,v, +v.Hy+v.H,v, +7H,v,)/4
o,=(H,9,+7v,H,+v.H,¢ +7H,9®,)/4
The eigenvalue count and matrixes of F.,, G},
and Q! , in sublayer [ can be recursively calculated

as follows

F.,,=F."(1+G.,'Ql ) 'FL} (C5)

G, =G, T F (G Q0 H(F ;D!
(C6)

Q6. =00 +(Fi DTG, + Q) D T F !
(C7)

and

JLDY s =23 (DY s +s[((GLEH QL +

(FLIOHGIED R ]
where [=N—1,--,1,0.

(C8)
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