EANRE LY il 35 h % i

2024 4 2 A

Chinese Journal of Computational Mechanics

Vol. 41, No. 1
February 2024

DOLI.: 10. 7511/js1x20230909001

An advanced computational approach for
layered structure modeling

PAN Er-nian™!,
LIN Chih-ping',

ZHOU Jiang-cun?,
ZHANG Zhi-qing*®

(1. Civil Engineering and Disaster Prevention & Water Environment Research Center,
Yang Ming Chiao Tung University, Hsinchu 300, China;
2. State Key Laboratory of Geodesy and Earth’s Dynamics, Innovation Academy for Precision Measurement
Science and Technology,Chinese Academy of Sciences, Wuhan 430077 ,China;
3. College of Architecture and Energy Engineering, Wenzhou University of Technology.Zhejiang 325035, China)

Abstract: In this paper, we present an advanced computational approach for modeling layered structures. The
structures can be horizontally layered plates or layered half-spaces. The materials can be multi-field coupled,i.e.,
thermoelastic, poroelastic,and magnetoelectroelastic coupled, but require that they are transversely isotropic (TD
with material symmetry axis along the layering direction. This advanced approach is based on the recently
constructed Fourier-Bessel series (FBS) system of vector functions and the dual-variable and position (DVP)
method. While the DVP is for propagating the layer matrix from one layer to the next with unconditional stability.,
the FBS vector system is to 1) represent the general deformations/waves with distinguished deformation/wave
types, and 2) pre-calculate the expansion coefficients as Love numbers and then use them later for massive
simulation of the involved problem. Three typical examples are presented to demonstrate the accuracy and
efficiency,as compared with the existing approaches. These are: faulting (or dislocation) in a layered earth, soil-

structure interaction.and transient wave propagation in a near-surface earth profile.
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1 Introduction

In nature, many systems present themselves in
layered structures: Our global Earth is approximately
a spherical and layered body. In its regional scale, we
have a horizontally layered half-space. Civil engineers
are also often faced with layered half-spaces in their
daily research and design. Learned from nature,
manmade layered structures are reported from time to

time, with excellent physical properties.
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When solving the boundary-value problems in the
layered structures, the domain-discretization method,
boundary-discretization method, and the related hybrid
method were proposed"'"*). If the layers are horizontal
with material properties in each layer being uniform,
analytical solutions can be derived™. The common
approach is to apply either the two-dimensional (2D)
Fourier-transform (for general deformation/wave) or
Hankel transform (for axis-symmetric geometry,as in
Ref.[4-7]) to suppress the horizontal dependences in
the governing equations.

Instead of the scalar 2D Fourier transform or
one-dimensional (1D) Hankel transform, both Carte-
sian system and cylindrical system of vector functions
can be applied®'. The advantages of applying these
systems of vector functions are: the dilatational and
torsional deformations are clearly decoupled. For wave

motion, this means that the P-SV/Rayleigh waves
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and SH/Love waves are decoupled. Therefore, in
terms of these vector functions,not only the governing
equations are decoupled but also these decoupled
equations are directly physically connected. In other
words,once the loading or source type is given, then
the corresponding decoupled governing equations can
be applied to find the solution.

For the axis-symmetric case, once the solutions
are obtained in the Hankel transformed domain,we
need to apply the inverse transform to find the
corresponding physical-domain solution. This is
usually carried out by the numerical quadrature
with perhaps the most accurate and fast one being
the MATLAB code''" developed based on the
mathematical formulations presented by Lucas

and his coauthor!?'¥

. However, it is still very

computationally intensive in most applications.
Another approach is to replace the Hankel

integral transform by the Fourier-Bessel series

1, as inspired from the spectral

(FBS) expansion
element method™*. Compared to the Hankel integral
transform, this series approach is computationally
more efficient for a given accuracy™'®'. This is
due to the fact that,the FBS method requires only
simple summation over discrete zero points of the

the Hankel

integral transform has to be numerically carried

Bessel functions, whilst inverse
out over each interval between these zero points.
Another important advantage which should be
particularly emphasized is that the expansion
coefficients in terms of the FBS are discrete, and
as such, they can be called LLove numbers similar
to those in the layered spherical Earth!®, Since
these Love numbers are discrete, they can be pre-
calculated and saved for later use as have been
frequently applied in geophysics™®, substantially
reducing the computational cost. While the FBS
expansion is very efficient and accurate, it was
limited to the simple symmetric vertical loading

201 constructed a

case only. Recently, Pan et al.
complete vector system from the FBS, called FBS
system of vector functions. Based on this vector
system,any vector as well as scalar function can
be expanded so that the very general boundary-
value problem in layered structures can be solved.

In the transformed domain, we will have a

system of ordinary differential equations (with respect
to the thickness =z variable). This system of equations
can be solved in each layer and then various matrix
methods can be applied to propagate the solutions
from one layer to the next). The common ones are
the traditional propagation matrix method,also called
the Thomson— Haskell method™""?*, the reflection

[23]

and transmission matrix method"*, the stiffness

matrix method ™. Recently,a very powerful method,
called the ( DVP)

method"***! was proposed rooted from the precision

dual-variable and position

integration method™’. We point out that a similar
called

method, was proposed with applications in electric

engineering .

formulation, compliance-stiffness ~ matrix

In this paper, we briefly review the novel
approach we recently developed for handling
layered structures; The FBS system of vector
functions combined with the DVP method. Its
accuracy and efficiency will be illustrated via three
typical engineering/science examples:Faulting (or
dislocation) in a layered earth, soil-structure
interactions, and transient waves in near-surface

earth profiles.

2 Boundary-value problem and basic
solutions

We use purely elastic materials to illustrate the
algorithm. We assume that there is a ¢-layered
transversely isotropic (TD) elastic structure where the
last layer could be a rigid base or a homogeneous TI
half-space. We place the x=0 plane on the surface
of the layered structures with positive z pointing
down to the medium. The layers are ordered from
top down,with layer [ being bonded on its upper
interface at =z, and its lower interface at =
2 s with a thickness h, = 2 — 2 1. As such, the
upper interface of the first layer is at the surface
of the layered structure at x= 2z, =0, and the last
interface is at 2= z,. The concentrated source can be
either a force or a dislocation (fault for earthquake
simulation) , applied, e.g., at ¥ = z, in layer j. The
special case is the source on the surface with
z,= 2o =0. Due to the applied force or dislocation,
the displacements and tractions (at z=z,) will

become discontinuous. Except for this source
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level, we assume that the displacements and
tractions are continuous on all the interfaces.
Notice that imperfect interface conditions can be
considered if needed"*%,

In order to solve the problem, the following
steps can be applied.

Step 1

For the transient (time-harmonic as an example)

to get rid of the time-dependence.

case, we first apply the Fourier transform to suppress
the time-derivative so that only the space-variation is

involved. The governing equations are well known,as

listed below %%
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Step 2

in the governing equations (1~3) above. For

to get rid of the horizontal variables

either axis-symmetric or general 3D deformation/
wave (with the angular dependence in terms of
different orders of triangular functions) , traditionally
we apply the Hankel transform of different orders.
For instance, following Lin et al.”! for the general

loading case,one can expand the displacements as

u,(ry0, z5m) = Z [u(ryz3m)cosm0—+

ulCry 23 m) sinm 0]

u,(ry 0, z5m) = Z [— w(rsz;m)sinm0+

m

ug (ry 23 m)cosm0]

u.(ry0, z3m) :Z [u(ry,zz;m)cosm0+

m

uCry z3m)sinm 0] (4)
where the involved expansion coefficients on the
right-hand sides will be only functions of r and 2
(along with frequency-dependence). After that,
the Hankel transform is applied to get rid of the

r-dependence, by applying

T :J £ I, (k) rdr
0

f(r):Jm]"(k)J,,l(kr)kdk 5)
0

Instead of Eqgs.(4,5), the following cylindrical
system of vector functions(CSVF) can be applied
L( T 0; )\a 'm) == ezS ( ) 0; )\a 'n/l)

d d
M(T,@;)\,m):(era—r—F ey Tw)S(ﬁ@;R,m)

d

N(Tv 6;)\5 WL) = (e,- 7,)0

— 63 )S(rbsim  (©)

1 imf)
S(rods;A,m)=——=J,,(Ar)e"™ sm=0,+1,+2,
2T
7

where e,,ej,e. are the unit vectors along the
coordinate axes r, 0, 2, respectively; J,, (Ar) denotes
the Bessel function of order m;and A is the transform
variable. Notice that the CSVF is an extension of the
scalar Hankel transform to the vector form, and it
further processes certain merits to be discussed below.

Since the vector system defined in Eq.(6) is
orthonormal, the displacement vector u and the
traction vector t (at = constant), can be expanded

as

“+ oo
uCri0,2) = >, j [ULCOLCry 052, m) +

m 0

Uu(2)MCr, 05X, m) +
Un()NCry 032, m) Jada (8)

t(r,0,2) = o,.e, 1+ cp.€p 1+ c.e.=
+oo
ZJ [T LCr 052, m) +
n 0

Tu(MCr, 03X, m) +

Tn(2) NCry 052, m) JAdA 9
where U; and T;(i= L, M, N) are the expansion
coefficients of the displacement and traction
vectors, respectively; Notice that the body force and
any given tractions can be also expanded. This CSVF
has been used for many near-surface geophysics, soil-
structure interaction, and earthquake engineering
problems. The beauty and physics connections are the
decomposition of different types of deformations or
waves,

The advantages of applying these systems of
vector functions are®'; The dilatational and
torsional deformations are clearly decoupled. For
the wave case, it means that the P-SV/Rayleigh

waves and SH/Love waves are decoupled. Therefore,
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in terms of these vector functions, not only the
governing equations are decoupled but also these
decoupled equations are directly physically connected.

Very recently, a computationally very efficient
vector system, i.e., the FBS vector functions, was
proposed,as defined below ™"
L(r,03m,k) =e.S(r.0;m,k)

d d
M0 mek) = (e, 5+ e ~50) S (a0 me k)

d d
NCrima ) = (e, -5 — e 5] S (ra0sma ) (10)
SCra0sm k) — —— J,, () € (1)

Vorm

where A, is the k'™ zero of the Bessel function of
order m, J,,scaled by a large value of R,i.e.,
J. (A R) =0. Hence, the displacement and traction
vectors can be expanded as

u(T, 0, 2) = u.e. —+ u,e, -+ Ugey =
ZZ [U. (A s 20 L(r,03my k) +
m k

UM()\mk , 2D M(r, 9; ms k) +
UnCAm s D2 NCry 03 my k)] (12)
t(r,0,2) =oc.e.+ o.,e 1 ogpey=

ZZ[Tl‘(}\mk,z)L(r,@;m,k) +
mk

Tr(A s DM Cry 03 m, k) +

T s DNy O3ms k) | (13)
Then, in terms of the FBS vector functions, the
governing equations (1~3) can be reduced to the
following linear systems of ordinary differential
equations in each material layer,as listed below .

For the N-type

d A Un 0 1/cu At Un
d_ - )\mk P P ( 1 4 )
2l Ty cos—Pw’ /Xy 0 T

For the LM-type

s 1
UL 0 C33 C33
1
Amk UM 71 O O L_H
g :)\I)lé ¢ ><
d=| Lo k| _ P 0 0 1
)\m}z }\?nk
Twu 0 Cllex_ClzsipTwZ 7& 0
L C33 ik C33
U
Ak Unmt
T, (15)
Aok
Twm

¥ ® H41%
We define the following two vectors
U()=[U(2) A.Un(]
T(Z):[TI(Z)/)\H,; T}\/I(Z)]r (16)

Now, for the given problem with the source in
layer j (traction free on the surface z=1z,), we
subdivide the source layer into two sublayers as
j1 and j2,with their thickness being hy=z2, —z;-)
and hy=z;—z,.. We then propagate from the surface
to the upper side of the source z,—,and from the

lower side of the source z,: to the last interface to

arrive at Ref.[ 29,30 ]
[}\mkUN(ZQ):' ]:Nh” N};“:|[}\mkUN(zx):] (17)
Ta(zo) | LN N L Tz

U(z) St SL!UCz, )
- 1051 1451 (18
T(z, ) So” Sy’ T(zy)

[)\mkUN(ZH»):' {N{?:q N{?q}f\mkUN(zq)} (19)

TN( Zq) N 1 ;f:q égzq TN( zHr)

U(z) Si#e ST U(g,)

[ : }[ i M ! } (20)
T(z,) Syt Sy, LT (20

Thus, for the given discontinuities (or the source
functions) at the source level 2= z,, Egs.(18~20)
can be arranged for solving the expansion coefficients.
Taking the case where only forces are applied at

2=z, and the surface is traction-free (i.e., Ref.

[29,30]),we have,

MkUN(zo)—' —1INi" 0 0 -
A Un (2)) 0 Nyt —1 0
Tu(z) | |0 —1 Nz N X
A’"kU“Z”)J L0 0 NEUN—EL(ELG)
i 0
0
— NIZIATN(2) @D
[— N ATy (2)
U(Z())W —I1S,;" 0 0 -1
Uz 0 S —1 0
T(z))‘: 0 —1I Si%¢ i X
U“‘QJ Lo 0 S SI—EL (EL D
r 0
0
—SITIAT(2,) (22)
|—SI7AT (=)

where the scalar functions and submatrices with

superscript ¢ +1 denote the eigenvectors in the last
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homogeneous half-space®"?*'. Notice that here the
discontinuity is for the traction only;the correspond-
ing dislocation source can be equally studied, as in
Ref.[18]. After that, depending on the relative loca-
tions of the field points, we can solve for the field
quantities at any depth.

If 2,<<z,: We propagate the layer matrix

from the surface z, to z; and then from z; to z,

on the upper side of the source to have

[)\mk UN (ZO ):' {N}l}d N%;kf:'|:)\mkUN(zf)} (23)
Tn(zp) | LNGY Ny 0
Utz [83Y 8u UG
P (24)

T(zp) L[SHY syk 0
[)\mkUN(Zf)} [Nf,ﬁ” Nf;:il}f\mkUN(Zx)} (25)
Ta(zo) 1 LNY NYUIL TGz
U(zp TS Tu (=)

= A (26)
T(z, ) SHH SHH [T (2))

Hence the solutions of the expansion coefficients
at the field level,along with other quantities,can

be expressed as

AeUn(z)] [—1INRY 0 o 71! 0

MUN&J 0 Ny¥ —1 0 1 0 1
To(zp) | |0 —1 NY! ”’1J 0 J
AeUnGOJ Lo o0 NN [Tz

(27)
U(zﬂ —I1s;Y 0 0 ]T 0

U(z,) 0S¥ —1 0 (2%)
Tzp| |0 —1 S f{‘”J [ 0
U(z,) 0 0 Syt s T(z, )

If ;> =z,:We propagate the layer matrix {rom the
lower side of the source z, to z; and then from z;

to z,»to have

[AmkUN(z_\)J{NﬁW N;i’“} [AmkUNu,»)} (29)
Ta(zp) | LNZM NEM || Ta(zo)

U(z,) szl:}‘l S72 ke U(zp)

T(2,) = | Qi2iks 2 kf (30)
o Sz Sy T(z, )

[ A Un(z¢) ] {Nflf:q Nkf:j[)\mkUN(zq)}

ENCEN) 'Un(zp) LN Nyl Tz
(3D

(St S Uz,
bra bl (32)
_SQj ! SZQ ! T(Zf)

[Ezg ErgljU(zq)
The solutions for the unknowns, including other

coefficients,can be expressed as,

A Un (2,) —1INGY 0 0 !
A Un () 0 NiM —1 0 «
Tz | | 0 —1 N N
}\mkUN(Zq) L O O N]/ 4 ;{q_E;\;(El\é )71
— N Tz
N2 RS
NZZ TN<Z‘\-) (33)
0]
L 0
UGz [—ISTY 0 0 !
U(zp) 0 S&Y —1 0
- kf: kSt X
T(zp) 0 —I S,,;° Si
U(zl{) L 0 0 S;Z’ K SM 4 Eng]zl
SZM T(2 )
12 kf
Tz (34)
0
L 0

Notice that the traction coefficients on the lower side
of the source level z,; can be expressed by those
on the upper side and the given discontinuity
source. We also mark that the following more
complicated problems can be also solved based on
the DVP and FBS system of vector functions:
(1)the mixed boundary-value problem in soil-structure

interaction™ , (2) the layered structures with imperfect

[25.26]

interface , (3) general dislocations in layered flat

Earth'"®', (4) poroelastic deformation in layered half-

Sspaces (3] ts2] .

,and (5)layered smart structures

For general anisotropy,one could just apply
the 2D Fourier integral transform or 2D Fourier
series approach. Then, the mathematically elegant
and computationally powerful Stroh formalism
can be used to derive the first-order differential
system of equations"***), The Stroh formalism is
formed by using both the displacements and
tractions expansion coefficients as the unknown
functions in each layer,just as we are using the
displacement and traction coefficients Uy ,Uy, Uy sand
Ti» Ty» Tn here.

For the FBS-based method, we can further apply
Kummer transformation to substantially reduce the
computational cost. As studied in Ref.[187], for
example, for a given accuracy, the direct summation
may need more than 100000 terms(or 100000 individual
Love numbers) ; with Kummer transformation where

the exact asymptotic solution is utilized, one needs
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only about 1000 or less terms.
3 Applications .
pp Layer1
To illustrate the advantages of the proposed :‘5
Layer 2 “\

approach, we carry out three examples
applications. These are faulting (or dislocation) in
a layered earth, soil-structure interactions, and
transient waves in near-surface earth profiles. In
these examples, we assume the following 4-layer
TT elastic half-space as listed in Tab.1. However,
the source/loading and responses are different,
with further the thickness being in hundred
kilometers in Example 1, as defined in Fig.1. In
Example 2 and Example 3 below for the time-
harmonic cases,a small damping factor f=0. 02 is
used so that the original elastic stiffness ¢; is
replaced by ¢; (14 if) where i is the symbol for

the imaginary part of a complex variable.

Tab.1 Thickness in meter,stiffness ¢;; in GPa,
density in kg/m®
Layer® Thickness c¢11 c12 c13 c33 css Density
1 0.15 0.92 0.40 0.46 1.73 0.50 2400
2 0. 36 0.20 0.10 0.12 0.60 0.15 2200
3 0.18 0.10 0.05 0.57 0.25 0.70 2000
4 o 0.23 0.19 0.19 0.23 0.22 1600

Notice: In Example 1 on dislocations in the layered Earth, the

thickness wunit is in hundred km, instead of m.

Furthermore, the problem is static so that density is not
needed.

3.1 A finite fault in a layered half-space

In this Example 1,we simulate the co-seismic
(i. e. , static) deformation,i. e. 3D displacement,
on the surface due to a rectangular fault which is
located in layer 2 as shown in Fig.1(a). The
parameters of the Earth model are listed in Table
1 with the thickness being in hundred kilometers
instead of meters. The parameters of the fault are
as follows: the left-lower corner is on the z-axis
with depth at 50 km, the strike angle is 90° (i. e.
along x-axis) ,dip angle (denoted by & is 50° and
rake angle (denoted by B) is 10°, the length and
width are,respectively,50 km and 30 km.

It is known that,in a TI medium,an arbitrary
fault (dislocation) is a linear combination of four
independent ones: vertical strike slip, vertical dip

slip » horizontally tensile fracture and vertically

(a) A general finite fault in a four-layer Earth with distance in
kilometers. The parameters of the fault are as follows: the left-lower
corner of the fault is on the z-axis with depth at 50 km, the strike
angle is 90° (i.e.,along a-axis) .dip angle (denoted by &) is 50° and
rake angle (denoted by B) is 10°,the length and width are,
respectively,50 km and 30 km

Layer 2

Layer 3

Homogeneous
elastic

transversely isotropic
half-space

z
(b) A generally loaded rigid disc on the 4-layer TT
elastic half-space

A/D

Conversion unit

Source mpms

Nearest offset Receiver interval
Xo dx

(¢) Surface waves survey with 24 geophones and earth profile

inverse in the 4-layer TT elastic half-space
Fig. 1 Three typical numerical examples
S Fig.2 the

functions (GFs) of these four types (denoted by

tensile fracture shows Green’s
12, 32, 22, 33 respectively for the dilatational
deformation, and by 12' and 32' for the toroidal
deformation) for the source depth at 50 km. In
computing GFs, we set R=5000 km which is
sufficiently large. Beyond the circle with radius
being 5000 km,the deformation is safely assumed
zero. To assure the convergence of the GFs, we

sum up about 1000 zeros (i.e.,the series is truncated
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at about 1000). Notice that since we can pre-calculate
the discrete expansion coefficients or the Love

numbers, the calculation time is thousands of

XIO-IZ
4r 12
g 0
3
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g -t
g
i)
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5
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u” 1 1 ]
0 10 100 1000
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0 10 100 1000
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16 —_ u 12
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5 8r
g
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2 4f
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Epicentral distance/m

times faster than the traditional Hankel transform
method if 1000 field points are required to draw

the curves in Fig.2.

Xlo-“
6
0 10 100 1000
%1071
4 33
0
4+
-8}
u:
-12 | u,
Uy
-16 I 1 ]
0 10 100 1000
%1071
! 32
0
-1k
2
u:
u,
-3 Uy
0 10 100 1000

Epicentral distance/m

Fig. 2 Green’s functions (in meters) of four independent types of dislocation with source depth at 50 km

In computing displacements by using the
Green’s functions, we need to first approximate
the fault by patches. For instance, we use 375
patches where each patch has a size of 2 km X
2 km with a uniform slip of 1 m. This means that
this fault causes an earthquake with magnitude
being about Mw=5.5. Then, we sum up the
deformation due to all the patches to obtain the
final results. If we use a total of 7200 field points
within the 100 km X 100 km square to calculate
the 3D displacement contours,the present method
is then at least 7200 times faster than the
traditional numerical integral approach.

3.2 Vertical disc loading over a layered half-space

This Example 2 is to illustrate the application
of the proposed method in dynamic soil-structure
interaction in the four-layer TI elastic half-space,

as shown in Fig.1(b). To understand the soil-

structure interaction, one needs the fundamental
compliance or stiffness matrix when a generally
loaded rigid disc is applied on the surface of or
within the layered half-space (e.g., Ref. [5]).
Under the general load as shown in Fig.1(b),the
soil-structure

following equation defines the

interaction stiffness matrix [ K]P*"

F. [ Kun Kum 0 0 0 0 ] uw]
M, Ky Kuv 0 0 0 0 0,0
F, 0 0 Kun —Kum 0 0 |luy
M, | 0 0 —Kuy Kuuw 0 0 |0,
F. 0 0 0 0 Kvw 0 | uwo
(M.l | O 0 0 0 0 Kerdl 0y |
37

where the left-hand side is the applied load (force
F; and moment M;) on the disc,and the column
matrix on the right-hand side are the displacements

(displacements wu; and rotations 6;) below the disc
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induced by the applied load.

The soil-structure interaction is mathematically a
complicated mixed boundary-value problem. Taking
the vertical loading F. as an example in which F. is
applied on the rigid disc of radius r=a on the
surface. For this case, the boundary condition on
the surface =0 of the layered half-space (for

{rictionless contact and independent of coordinate

0 is

w(rs0) =u, O<r<a
6..(1r,0) =0 (a<<r<{co) (38a)
6,.(r,0) =0 (0 < r<<oo)
where u., in Eq.(38a) is unknown which needs to
be determined by the vertical force balance

between the applied F. and the vertical traction o..

under the disc,given by

ZKJuo‘m(hO)rdr:Fz (38b)
0

To solve this complicated mixed boundary-
value problem, we propose to find the Green’s
functions due to the uniform vertical load within
the ring area on the surface where the uniform
load density is unknown,to be determined by the
force balance relation Eq.(38b). Then,an integral
least-square approach is applied to find wu., in
Eq.(382)P%). Finally, the relationship Eg.(38b)
between the applied F. and the displacement
under the disc can be found, which solves one of
the required soil-structure interaction stiffness
elements.

Fig.3 shows the convergence of this stiffness
element as a function of ring number. | | denotes
the of the The
normalized stiffness and frequency are respectively

defined KCV: KVV/ ( Cyq Ll) :Fz/( U0 Cyy a)

module normalized stiffness.

as and

w():wam , in which ¢, =0.9 GPa and p=
2400 kg/m®. As can be seen that when N, is greater
than 24, the corresponding results in both static
(wy=0) and dynamic cases show good convergence.
Consequently, we take N, = 36 in the associated
calculation to ensure the accuracy of the results. We
also compare the vertical stiffness from the present
method with those based on the CSVF method for
different input frequencies. For instance, for w,=0

and N, =36, |Kyy| =1.790 (present) and |Kyy|=

1.786 (CSVF), with a relative error 0. 22% ; for
wo=4 and N,=36, |Kyv| =22.160 (present) and
|Kyyv | =22.148 (CSVF). with a relative error
0.05%. However, the computational time of
present method for a given frequency and with
N,=36 took only about 1 minute, while the CSVF
method required about 60 minutes (in the same
laptop PC). That is to say, the computational
efficiency of the present method is at least 60

times faster than the CSVF method.
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Fig. 3 Convergence of the normalized vertical stiffness with

different ring number N,(M=100000,R/a=650),

for different normalized frequencies

3.3 Surface waves in a layered half-space

In this Example 3,surface waves in the four-
layer half-space are analyzed. Waveforms on the
surface of the layered half-space are particularly
the of
. For instance, in the multichannel

analysis of surface waves ( MASW)P, time-

useful in inversion shear velocity

[17.35]

profile

domain vertical and horizontal displacements can
be recorded and converted to the dispersion curves

Such

comparison would help refine or invert the true

to compare with the modeling results.
velocity profiles in the layered half-space. As
such, calculations of full waveforms, dispersion
curves and the corresponding modal shapes are all
important in the forward modeling.

Shown in Fig.4 are the vertical and horizontal
displacement waveforms on the surface of the
four-layer TI elastic half-space induced by a
uniform vertical surface load. Here, 24 channels
on the surface (with nearest offset xy,=0.2 m and

spacing dax=0.2 m) are used. The source is
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applied within a circle of diameter 2a=0.1 m,and
in terms of times, as a half-sine pulse with
duration T,=0.025 s,expressed as sin (wt/T,).
In the simulation, the parameter R=500 m was
used,along with truncation terms at M =10000.
When
displacements, we fixed dt=0. 0005 s, T=0.25 s

presenting the time-domain surface
(number of time-domain data = 500, df=4 Hz,
Nyquist frequency=10000 Hz).

Since, for a given frequency, the calculation
has to be carried out for the 24 channels (or 24
field points) on the surface, the FBS-based
method is at least 24 times faster than the Hankel
transform-based numerical quadrature. Then, in
the time-domain, the computational efficiency
would be 24 times the number of frequencies used
for inverse Fourier transform. This number is 250
in Example 3. As such, the FBS-based method is
advanced than the

more existing numerical

quadrature methods.

0.00 0.00
oos | ) "»M M 00s | »% e
2010} 2010}
£ =
015+ 0.15
0.20 L 020 L '
0 1 2 1 4 5 0 1 2 1 4 5
Offset/m Offset/m

Figu.4 Vertical u.(r,t) and horizontal u,(r,t) waveforms obtained
from 24 channels induced by a half-sine pulse, where the nearest
offset is fixed at x90=0.2 m with fixed space dx=0. 2 m, where

250(=500/2) frequencies are used to obtain the time-domain results

4 Conclusions

We have presented an advanced computational
approach for modeling layered structures along with
three examples of applications: faulting(or dislocation)
in a layered earth, soil-structure interactions, and
transient waves in near-surface earth profiles.
This approach is based on the Fourier-Bessel
series (FBS) system of vector functions and the
dual-variable and position (DVP) method. While
the examples presented are for the purely elastic
media showing computational advantages as compared

to the existing conventional approaches,this approach

can be extended to many other more complicated and
coupled material systems, with some of them being

under investigation.
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